Energy Security and Biofuel for a Low Carbon Economy in the Asia-Pacific Region

International Forum for Sustainable Asia and the Pacific 26-27 June 2009, Hayama, Japan

Presented by:

KK Philip Kang
Economic Affairs Officer
Energy Security Section, Environment and Development Division (EDD), ESCAP

Outline

- Asia Pacific: An Overview
- ESCAP Background
- Energy Situation in AP
- Energy Security Paradigm Shift
- Biofuels Status and Potential in AP
- Biofuel and Sustainable Development Dimension: economic, environmental and social (MDGs)
- Future of Energy Security and Biofuels To biofuel or not to biofuel?

UNESCAP

53 Member states

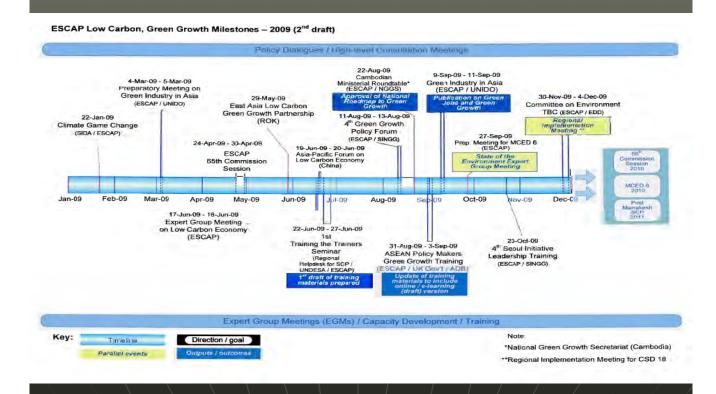
9 Associate members

49 within the region

1. The Asia-Pacific: An Overview

- Population: 3.9 billion people or 2/3 of the global population
- Density: 1.5 times the global average
- Land surface: 40% of global land area
- Diversity and Disparity: LDCs (14),
 LLDCS (12), SIDS (16), Economies in
 transition (8) & developed economies (5)
- High GDP per capita (PPP) country & low country (Japan/US\$33,100 & Tajikistan/US\$1,300)
- 2/3 of the world's poor (1/5 lives on \$1/day)

2. ESCAP Background


- Established in 1947 (Shanghai Bangkok)
- Regional development arm of United Nations
- A forum to discuss inclusive socio-economic issues & strengthen regional cooperation
- Main areas: poverty reduction, environment, social issues, statistics, transportation, trade, ICT & disaster reduction
- Environment & Development Division: Environment, Water and Energy Security Sections

Key Milestones

- MCED5 (Seoul, March 2005) adopted Green Growth as key regional strategy for achieving continued economic growth compatible with environmental sustainability
- 64th session of the Commission (Bangkok, April 2008) emphasized the need for transition towards a sustainable energy security path
- Low Carbon Development Path (LCDP) envisioned to facilitate essential transition in line with Green Growth approach (17-19 June 2009, Beijing)

Roadmap to Low Carbon (2009)

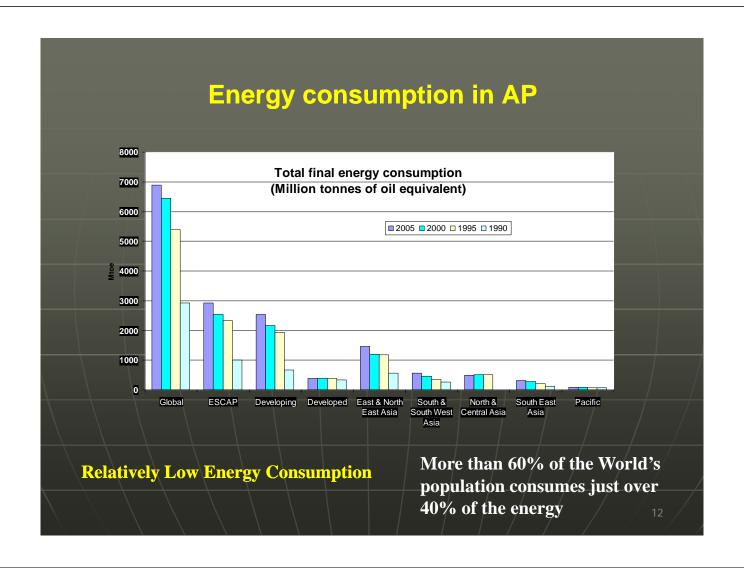
3. Energy Situation in Asia-Pacific

Theme Study on Energy Security & Sustainable Development in AP 64th Commission, Bangkok, April 2008

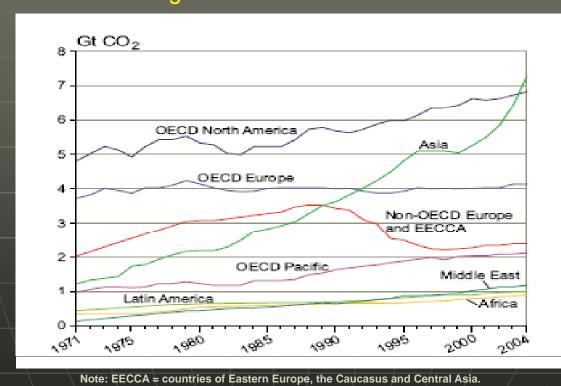
- High dependency on fossil fuels aggravating AP's vulnerability to energy prices
- Share of fossil fuel consumption to remain 82% in 2030 under BAU scenario
- Shift to "quality of growth" and sustainable energy paradigm
- Regional energy system baseline scenario would require US\$9 trillion up to 2030
- LDCs are most vulnerable to high oil price

Poor are paying disproportionately

According to UNDP, between 2002 & 2005, poor households in China, India, Indonesia and Lao PDR paid steeply for rising energy costs


- 171% more for cooking fuels
- 120% more for transportation
- 67% more for electricity
- 55% more for lighting fuels
- 33% more for fertilizers & other

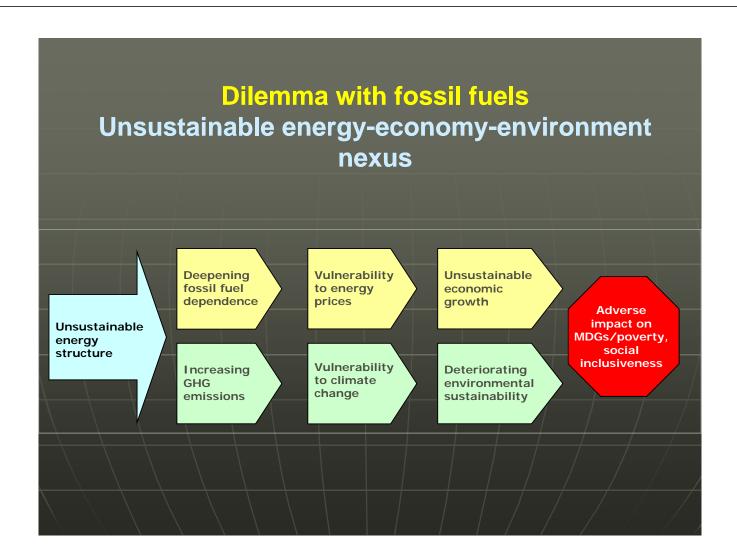
agricultural inputs 74% more for ener as a whole

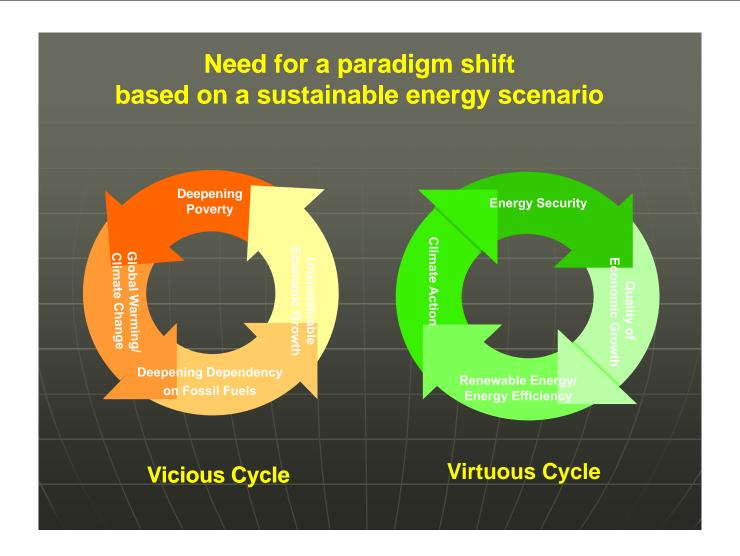


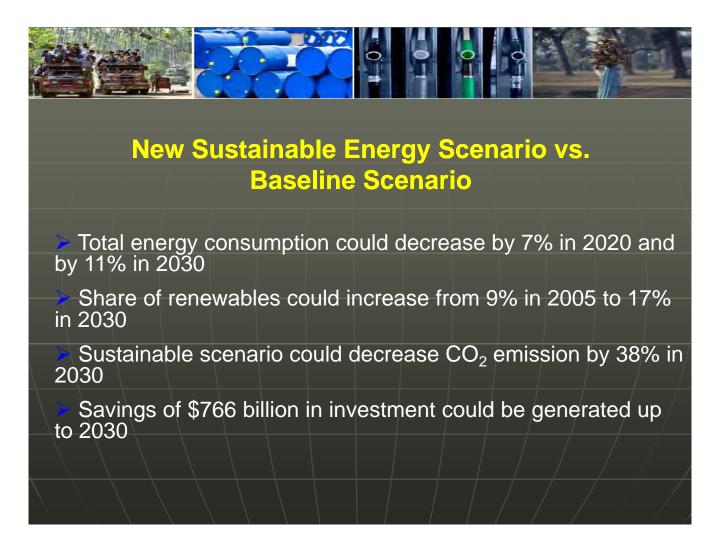
Oil import dependency of selected countries

Country	Total Oil Supply (Thousand bpd)	Import (Thousand bpd)	Dependency (%)
China	5421.49	2023.96	37.33
Japan	5160.04	5224.50	
India	2485.00	1710.64	68.84
Thailand Republic of	815.48	598.43	73.38
Korea	2032.33	2055.82	
Philippines	316.04	318.82	
New Zealand	136.55	110.44	80.88

Global trends in CO2 emissions from fuel combustion by region from 1971 to 2004


Source: IEA, 2006.

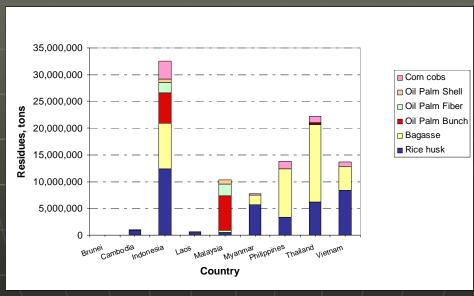

Country	2000	2050	
America	20.6	15.1	
<mark>China</mark>	<mark>14.7</mark>	<mark>22.9</mark>	
EU 25	14.0	7.8	
Russia	5.7	2.8	
India	5.6	9.2	Shares of
<mark>Japan</mark>	3.9	1.8	GHG
Brazil	2.5	2.2	emissions
Canada	2.0	1.3	in 2000 &
Republic of Korea	1.5	1.0	
Mexico	1.5	1.7	2050 (%)
Indonesia	1.5	2.2	
Australia	1.5	1.0	
South Africa	1.2	1.1	
Rest of the World	23.8	29.9	


4. Energy Security Paradigm Shift

- To reverse carbon emissions and climate change trajectory
- To ensure energy supplies for sustaining socio-economic development
- To widen access to energy services by the poor contributing to the achievements the MDGs
- To minimize the impact of high and volatile oil/energy prices on the economy
- To promote regional and subregional energy cooperation

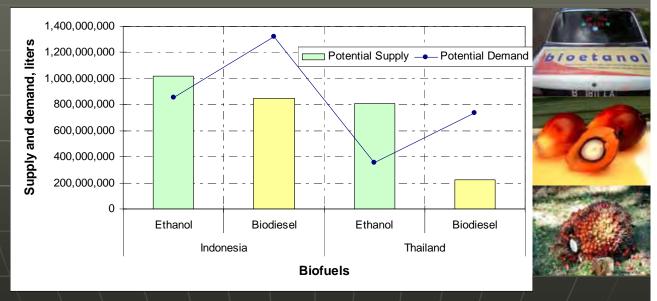
5. Biofuels Status & Potential in Asia-Pacific

 Situation Analysis on Biomass Utilization & Trade in Asia & the Pacific with Particular Focus on Indonesia & Thailand


June 2007

- Regional Forum on Bioenergy Sector Development: Challenges, Opportunities & the Way Forward January 2008, Bangkok
- Policy Dialogue on Biofuels in Asia: Benefits & Challenges
 September 2008, Beijing
- Theme Study: Sustainable Agriculture and Food Security in Asia & the Pacific April 2009, Bangkok

A. Situation Analysis on Biomass Utilization & Trade in Asia & the Pacific with Particular Focus on Indonesia & Thailand *June 2007*


Biomass potential in South East Asia

Estimates of Agricultural Residues in Southeast Asia, tons

A. Situation Analysis on Biomass Utilization & Trade in Asia & the Pacific with Particular Focus on Indonesia & Thailand *June 2007*

Biofuel potential in Indonesia & Thailand

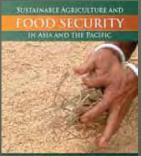
Estimated Potential Supply and Demand of Biofuels in Indonesia and Thailand

B. Regional Forum on Bioenergy Sector Development: Challenges, Opportunities & the Way Forward 23-25 January 2008, Bangkok

In collaboration with the Ministry of Agriculture and Cooperatives of the Royal Government of Thailand

C. Policy Dialogue on Biofuels in Asia: Benefits & Challenges

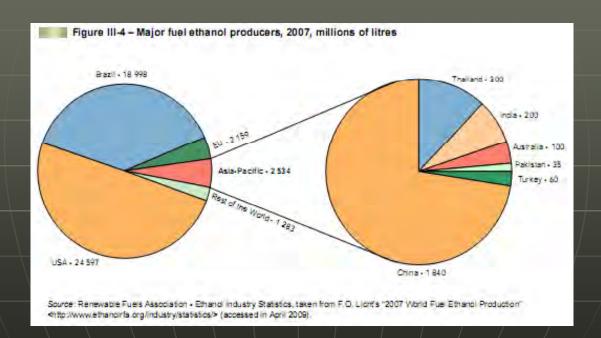
September 2008, Beijing


Major Outcomes from Summary Report

- For developing countries in the Asia-Pacific, biofuel programmes should address energy access for the poor at the community level.
- A regional body or a network should be created to provide certification on the production of sustainable biofuels.
- •Trade within Asian countries should be given priority and opportunities explored for this trade to flourish.
- International cooperation and regional cooperation on biofuel and biomass resources among countries in Asia via dialogues, network creation and information sharing.

D. Theme Study: Sustainable Agriculture and Food Security in Asia & the Pacific

April 2009


@ESCA

Rapid expansion of biofuels industry

- World total of 62 billion litres (52 billion litres bioethanol & 10 billion litres biodiesel)
- Between 2001-2006, bioethanol grew by 22.7 % and biodiesel 43.2% per annum
- In 10-15 years, biofuels could provide 25% of world's energy needs (FAO)

D. Theme Study: Sustainable Agriculture and Food Security in Asia & the Pacific *April 2009*

Biofuels and its impact on food security in AP

Brazil + U.S. produce 88%, whilst AP only 5%

- Biodiesel production in AP
- Europe responsible for 80%, Asia 10-20%
- Malaysia and Indonesia are world largest producers of palm oil
- Combines potential capacity of 22 billion litres
- Palm oil, soybean, jatropha are main feedstocks for AP

Biofuels and its impact on food security in AP (cont'd)

- Biofuel implications for AP
- Industry still in development stages
- Production is relatively small
- Unlikely to have significantly contributed to food crisis
- Rice being primary staple crop, not affected

6. Biofuels and Sustainable Development Dimension: economic, environmental and social (MDGs)

"If we get it right, bioenergy provides us with a historic chance to fast-forward growth in many of the world's poorest countries, to bring about an agricultural renaissance and to supply modern energy to a third of the world's population."

Jacques Diouf, Director-General, FAO

"It is a crime against humanity to convert agriculturally productive soil into soil which produces foodstuffs that will be burned into [as] biofuel."

Jean Ziegler, UN Special Rapporteur on The Right to Food

Potential benefits of biofuels: GOOD

- Biofuels are carbon neutral (?)
- Reduced GHG (?)
- Biofuels can increase farm income
- Biofuels can improve energy security
- Biofuels can create new jobs
- Biofuels are simple to produce

Potential negative impacts of biofuels: BAD

Threat of biodiversity

 Clearing tropical forest, monotonous cultivation and genetically modified crops can cause significant distortion on biodiversity

Unsustainable land use

 Use of deforestation to extend arable land for biofuels will magnify GHG emission significantly rather than reduce them

Potential negative impacts of biofuels: BAD

Water shortage

- Expansion of arable land will require more irrigation
- Biomass needed to produce one litre of biofuel evaporates between 1000-4000 litres of water

Food inflation and food security

 More requirement of land due to the increase in biofuel consumption leads to shortage of food and inflation in food market

7. Future of Energy Security and Biofuels

- "To biofuel or not to biofuel"?

Sustainable and regulated biofuels

- AP would eventually need to forge and reach a greater degree of <u>consensus on biofuels</u>
- AP should continue <u>policy deliberations</u> in support of global consensus along the lines prescribed in the CFA
- National biofuel plans and strategies to provide a <u>standard</u> and <u>regulatory framework</u> that is sustainable and consistent with policies on poverty alleviation, climate action and rural development
- Need for a <u>full life cycle assessment (LCA)</u> on biofuel crops produced in the region as information source for regulating and certifying biofuel production

