

- 1. Overview of Integrated Policy Assessment model
- 2. REPA model as a prototype
- 3. Application of REPA model to Japan LCS study
- 4. Simulation results
- 5. Conclusions

- Sustainable Development (SD) aims to alleviate the present poverty without losing key ecosystem functions underpinning human well-being, e.g. hydrological cycle, nutrient cycle, atmospheric composition stabilisation, provision of natural resources (Kojima 2007).
- Ex-ante policy impact assessment greatly facilitates formulating and implementing SD policies by:
 - Simulating the overall results of complicated direct and indirect impacts of policies.
 - Demonstrating win-win solutions for convincing stakeholders.

Motivation

- Before this study, the LCS project did not quantitatively assess international impacts of Japan LCS scenarios.
- Japan LCS scenarios underpin Japanese climate policy, which is a subject of international negotiation.
- International competitiveness is always a hot issue for low carbon policy debate.

\rightarrow This study aims to fill this important research gap.

Objectives of the study

- Assess international impacts of Japan LCS scenarios.
- Demonstrate how regional cooperation could contribute to regional CO₂ emission reduction without negative economic and poverty impacts, through regional cooperation.

11

Based on "a dozen actions", LCS-1 scenario assumed:

- 40% reduction in households' electricity demand, which requires 20% increase in households' demand of electronics and other manufacturing goods as the cost.
- 40% increase in productivity of energy input for agricultural, manufacturing and service sectors except for the electricity sector, which is achieved by diversion of capital and labour inputs represented by 20% reduction in productivity of value added inputs.
- 40% increase in total factor productivity for electricity sector, which is achieved by diversion of capital and labour inputs represented by 40% reduction in productivity of value-added inputs.

LCS-2	2: In	pacts o	on in	ternatio	ona	l comp	etit	iveness	
Impact	s on i	internatio	nal co	ompetitive	enes	s (figures	are	changes	in
sectora	l prod	duction) a	ire co	mplex an	d so	me winne	rs a	re not	
intuitiv	e. Th	e assessn	nent r	esults de	penc	d on cost	para	meters.	
Major winners									
Japan		Korea		China		Thailand		World	
Gas	42.7%	Gas distribution	3.9%	Chemical, rubber, plastic prod	0.2%	Petroleum, coal products	1.0%	Electronic equipment	0.4%
Dwellings	2.0%	Fishing	0.8%	Electronic equipment	0.2%	Air transport	0.7%	Dwellings	0.3%
Ferrous metals	1.9%	Chemical, rubber, plastic prod	0.7%	Other agriculture	0.2%	Chemical, rubber, plastic prod	0.5%	Ferrous metals	0.1%
Japan		Korea		China		Thailand		World	
Gas distribution	-48.0%	Gas	-10.5%	Oil	-1.1%	Gas	-2.6%	Gas	-2.3%
Petroleum, coal products	-37.6%	Oil	-2.4%	Coal	-0.9%	Oil	-1.8%	Oil	-2.3%
Coal	-35.3%	Ferrous metals	-1.1%	Gas distribution	-0.5%	Gas distribution	-0.7%	Petroleum, coal products	-2.1%

Conclusion

- This study demonstrates potential of multi-regional dynamic computable general equilibrium (CGE) model for integrated policy assessment for sustainable development, particularly focusing on trade, environment and regional cooperation.
- The REPA model was developed as a prototype of such tool for integrated policy assessment.
- The Japan LCS scenario study provides some useful insights from such assessment based on a prototype model (REPA model), but also reveals the remaining challenges to develop full Integrated Policy Impact Assessment model. We are now addressing these challenges to develop full model.

26

References

- Anderson, Kym, W. J. Martin, and D. van der Mensbrugghe. 2006. Global Impacts of the Doha Scenarios on Poverty. Washington DC: World Bank.
- Klepper, G. , and S. Peterson. 2004. Marginal Abatement Cost Curves in General Equilibrium: The Influence of World Energy Prices. Milan: Fondazione Eni Enrico Mattei.
- Kojima, Satoshi. 2007. Sustainable Development in Water-stressed Developing Countries: A Quantitative Policy Analysis. Cheltenham: Edward Elgar.
- Kojima, Satoshi. 2008. REPA Model for Impact Assessment of Environmental Policies under Regional Economic Integration in East Asia. IGES-EA Working Paper 2008-001. Hayama: IGES.
- "2050 Japan Low-Carbon Society" scenario team. 2008. Japan Scenarios and Actions towards Low-Carbon Societies (LCSs). Downloadable from: http://2050.nies.go.jp/material/2050_LCS_Scenarios_Actions_English_08 0715.pdf