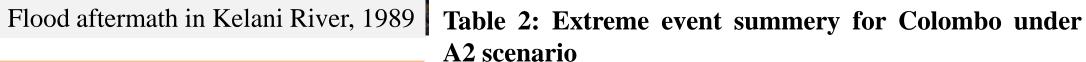
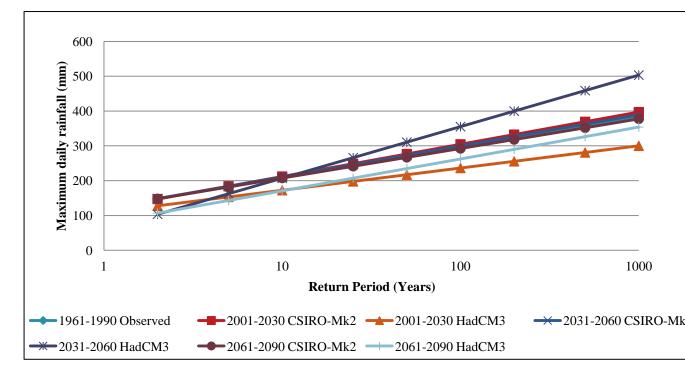
M. A. C. Niroshinie Dept. of Civil Engineering, Yokohama National University, Yokohama , Japan, Email: niroshinie-m.-tw@ynu.ac.jp

ADAPTATION TO EXTREME FLOODS UNDER FUTURE CLIMATE CHANGE SCENARIOS FOR COLOMBO, SRI LANKA

1. INTRODUCTION


- ✤ Flooding is one of the major disasters in Sri Lanka. Every year, thousands of people loss their properties due to floods.
- ✤ Colombo is the commercial capital of the country. Since major part of Colombo is located in the flood plains of Kelani River, Colombo undergoes frequent floods.
- Colombo has undergone the effects of climate change for the past years and literature suggests that Colombo will have more extreme flood events in the future .
- ✤ Though there is a flood protection system, many improvements should be done to minimize damages due to floods.

<image>


5. RESULTS AND DISCUSSIONS

500

5 400

E 300

a 100

- Figure 3: Predicted future extreme events for Colombo under climate change conditions (A2 scenario)
- ◆ CSIRO-Mk2 model predicts extreme events very close to those of the past years.
- ◆ HadCM3 tend to reduce extreme events of low return periods and increase extreme events of high return periods.

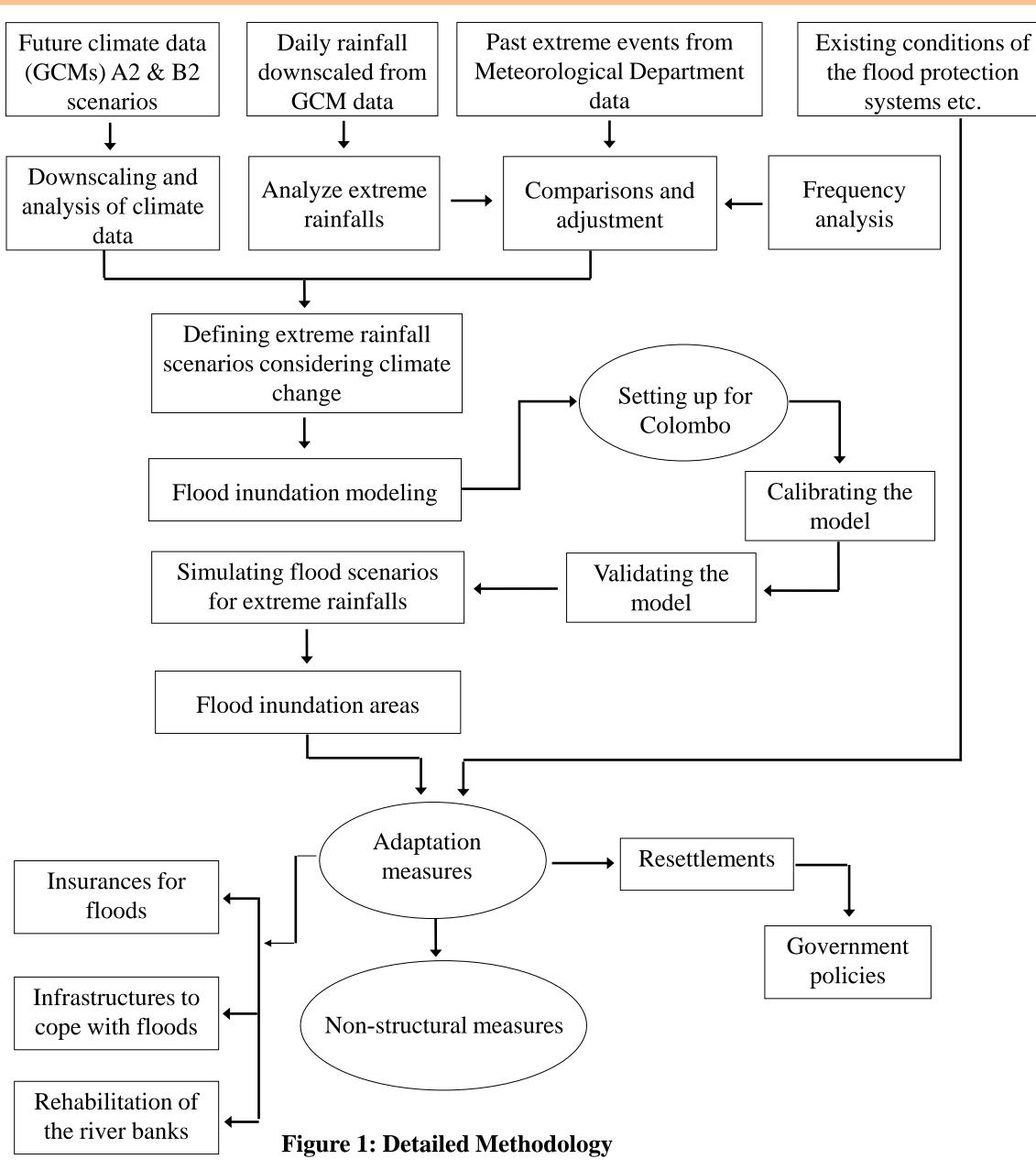
² 2001-2030_HadCM3 2061-2090_CSIRO-Mk2 -2031-2060_CSIRO-Mk2 -2031-2060_HadCM3
 Figure 4: Predicted future extreme events for Digalla under climate change conditions (A2 scenario)

♦ HadCM3 predicts larger extreme events for all the durations than CSIRO-Mk2.

Return Period (years

- ◆ CSIRO-MK2 also shows increase in extreme events.
- ◆ Compared to extreme events at Colombo for the baseline, extreme events at Digalla showed lower rainfalls from CSIRO-Mk2 for the past.

Table 3: Extreme event summery for Digalla under A2scenario


A flood in Kelani River, 2005

During a flood in Kelani River

2. OBJECTIVES

To analyze future climate conditions in the Kelani basin with different Global Circulation Model (GCM) data
To define extreme rainfall scenarios for the Kelani basin taking climate change into account
To model and simulate flood inundations in Colombo area under extreme rainfall scenarios
To propose adaptation measures to reduce the impacts in Colombo area

3. METHODOLOGY

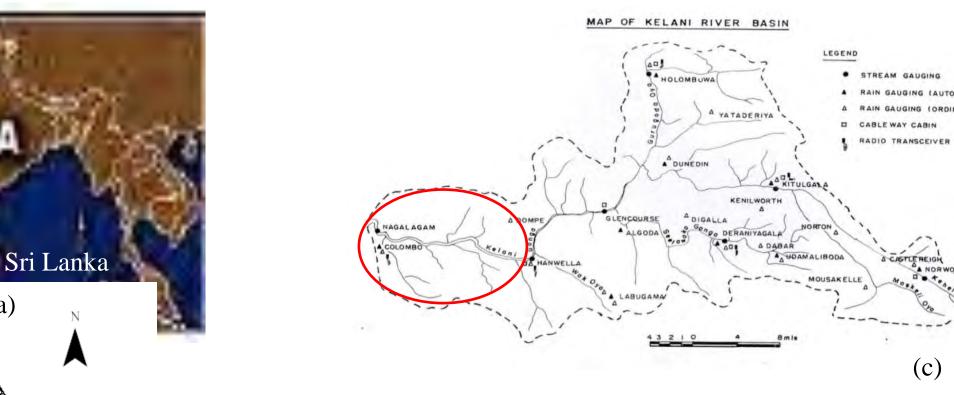

	Daily rainfall (mm)						Daily rainfall (mm)				
		Average of ensembles		Preferred model				Average of		Preferred model	
Return				(CSIRC	D-MK2)	Return		ense	embles	(CSIRC	D- MK2)
period (Years)	1960 - 1990	Future value 2001- 2030	% increment over the baseline	Future value 2001-2030	% increment over the baseline	period (Years)	1985 - 2000	Future value 2001- 2030	% increment over the baseline	Future value 2001- 2030	% increment over the baseline
2	148	130	-11.9	147	-0.7	2	141	180	27.3	148	5.0
5	183	168	-8.2	184	0.5	5	161	219	35.9	176	9.3
10	209	197	-5.9	212	1.4	10	176	248	40.9	196	11.4
25	244	235	-3.9	249	2.0	25	197	287	45.8	224	13.7
50	271	263	-2.8	277	2.2	50	212	317	49.3	244	15.1
100	297	292	-1.9	304	2.4	100	227	346	52.4	265	16.7
200	324	320	-1.1	332	2.5	200	243	376	54.5	286	17.7
500	359	358	-0.2	369	2.8	500	263	415	57.6	313	19.0
1000	385	387	0.4	397	3.1	1000	278	444	59.7	334	20.1

Table 4: Water levels at Nagalagam street for differentfuture and past flood scenarios

Scena	rio		
Rainfall return period (Years)	Upstream inflow increment (%)	Water level at Nagalagam Street (mMSL)	
10		1.69	
25	10	2.05	
50	20	2.44	
100	30	2.85	
10 yr rainfall with			
0.5m increment in		1.94	
tide			
1989 event		2.81	

Table 5: Comparison of past extreme flood events withfuture scenarios

at			Past floods	Future	floods
treet					
		Return	Water	Water	
	Category	period	level at	level at	Inundated
1.69		(Years)	Nagalaga	Nagalaga	areas
2.05			m	m	(km ²)
2.44			(mMSL)	(mMSL)	
2.85					
	HR DS*	500	1.94	1.69	94
1.94	HR US**	100	2.80	3.28	230
		80	1.75	2.85	208
2.81		20	2 01	3 28	235

Table 1: Historical major extreme events in Kelani basin

(b)

Flood date		6/6/89	5/6/92	21/4/99	22/11/05	29/4/08	1/6/08	
Water level Nagalagam			2.80	1.54	2.01	1.72	1.75	1.80
(mMSL)		Hanwella	11.56	8.27	9.39	9.07	9.91	9.51
(mm)	Colombo	Day earlier	12	494	285	270	13	35
		Flood day	3	16	29	49	1	56
(m	Hammalla	Day earlier	10	260	198	271	24	57
rainfall	Hanwella	Flood day	9	12	32	38	1	98
	Digalla	Day earlier	N/A	99	61	162	169	131
ly 1	Digalla	Flood day	N/A	3	79	28	0	140

1707 CVCIII	2.01
2005 event	1.72
2008 event	1.81

DS*** 15 1.72 2.85 219	HR US &	20	2.01	3.28	235
		15		1 285	219

(Note: *Heavy Rains Down Stream, **Heavy Rains Up Stream, ***Heavy Rains both Up Stream and Down Stream)

Illegal low land filling

Destruction of river banks

usion

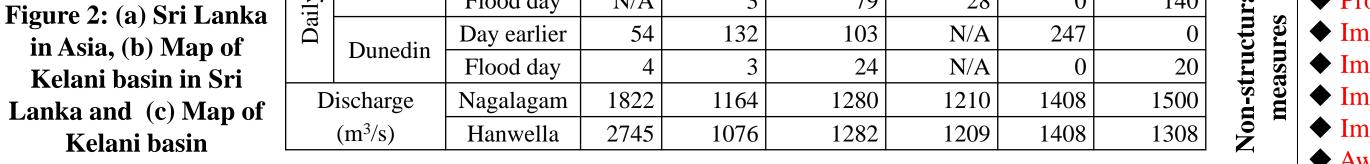
ncl

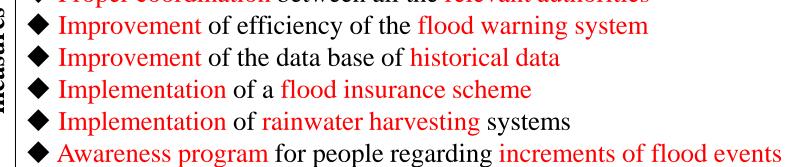
Encroachment to flood plains

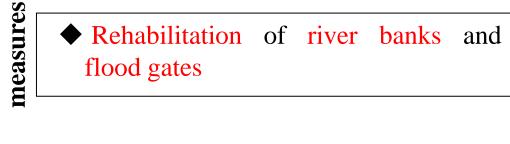
Improper maintenance of river branches

Improper maintenance of flood gates

Some of the major flood-inducing problems in Kelani River


Destruction of river bank


6. CONCLUSIONS AND RECOMMENDATIONS


- Changes in seasonal rainfalls were observed due to climate changes.
- Future extreme rainfall events in Colombo will remain closer to past data though upstream station seems to have higher values than the past data.
- Flood inundation areas will increase due to climate change conditions.
- GCM data should be analyzed for few more stations in the basin with longer durations of observed records
- Since Sri Lanka is an island, regional climate models (RCM) need to be developed for the area.
- The extreme events obtained and rainfall trends should be compared with dynamical downscaled GCM data as well.

Maintenance and improvement of existing flood protection systems
 Proper coordination between all the relevant authorities

Structural measures

