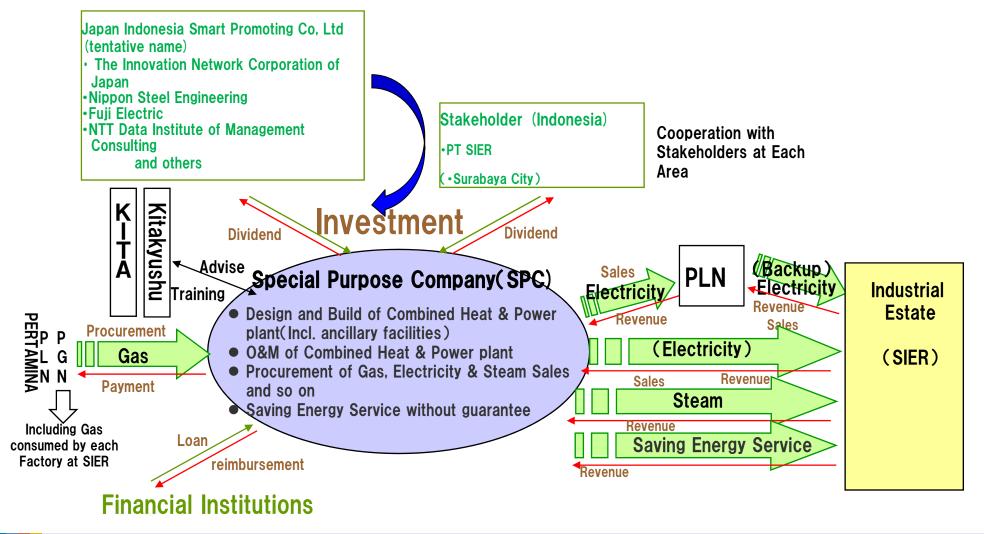
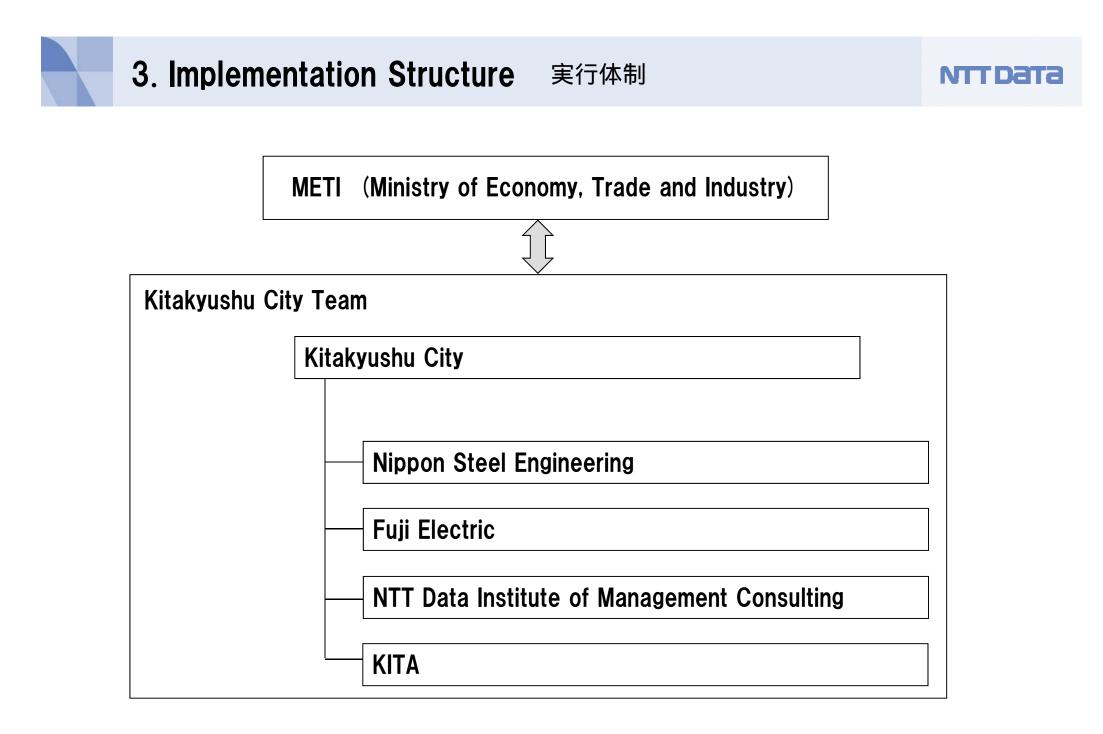

# **ISAP2012**



# **Development of Smart Communities in Asian Cities** アジア都市のスマートコミュニティの普及と課題

July 25, 2012 NTT Data Institute of Management Consulting, Inc. Socio & Eco Strategic Consulting Sector




### 2. Assumed Expansion of Business by Private Sector 想定している民間企業のビジネスとその拡大イメージ

NTT Data

 Establishment of Investment Company in Japan, which invest & arrange financial matter in Indonesia.







| Item                                                                                              | Method                                                                               |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| (1) Current Situation Survey of Energy Demand &<br>Energy Policy in Indonesia                     | Research of Existing Documents and<br>Data Base                                      |
| (2) Current Situation Survey of Energy Demand &<br>Energy Policy in Surabaya                      | Research of Existing Documents,<br>Field Survey, Discussion among<br>those concerned |
| (3) Business Environment Survey of Combined<br>Heat & Power System in Indonesia                   | Research of Existing Documents,<br>Field Survey, Discussion among<br>those concerned |
| (4) Study of Problems & Solutions for Driving the<br>Introduction of Combined Heat & Power System | Field Survey, Discussion among those concerned                                       |
| (5) Feasibility Study to introduce Combined Heat<br>& Power System and Energy Saving at SIER      | Field Survey, Discussion among those concerned                                       |
| (6) Pre-study of Advancement of Wastewater<br>Treatment System                                    | Field Survey, Discussion among those concerned                                       |
| (7) Research of Existing Study and Preparation of<br>Master Plan                                  | Field Survey, Discussion among those concerned                                       |

### 5. Lesson Learned 活動に当たってのポイント

### **1**Needs Oriented Approach

(Example)Existence of Thermal/Steam Needs, from Steam Procurement by each Factory to Network Procurement

Consortia Approach –Aggregation of Strength of Member Company –Internal & External Coordination

### **③**Participation from Planning Phase (the Beginning)

-Role of Consultant

-Role of (Local) Government / (Example) Establishing Relationship through non-profit activities such as Training & Education of Human Resources, Grass-root activities

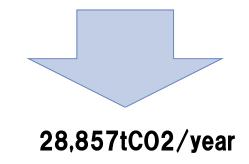
**(4)**Understanding Local Legal & Institutional System

- -Electricity Regulation
- -Energy Regulation
- -Public Procurement Procedure

**5**Flexible Alliance with Local Public Organization and Local Private Companies

- -Win-Win
- -Ecosystem

6 Localization


-Understanding Language & Culture

### 6. Example of Trial Calculation / CO2 Reduction (Surabaya) CO2排出量削減効果の試算例

NTTData

 $BE_{y} = CSO_{y} * (H_{steam} - H_{water}) / 1,000,000 / e_{b} * CEF_{NG} *FCO_{NG} *44 / 12 / 1,000 + CEO_{y} * EF_{elec}$  $PE_{v} = PEC_{NG,v} * NCV_{NG,v} / 10^{9} * CEF_{NG} *FCO_{NG} *44 / 12$ 

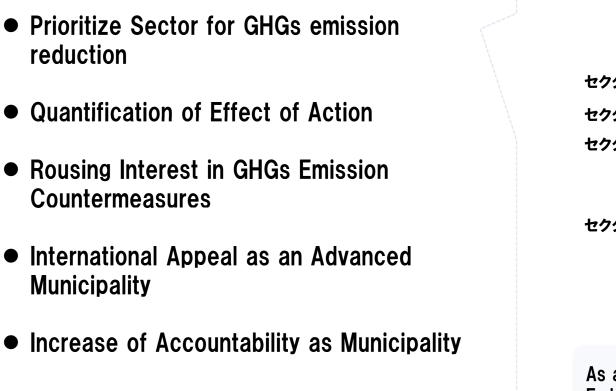
|                    | Parameters                                          | Unit     | Number        |
|--------------------|-----------------------------------------------------|----------|---------------|
| $CSO_y$            | Quantity of Steam by Co-Generation                  | kg/year  | 146, 700, 000 |
| $H_{steam}$        | Enthalpy of Steam by Co-Generation                  | kJ/kg    | 2, 794. 53    |
| $H_{water}$        | Enthalpy of input water to Co-Generation            | kJ/kg    | 336.5         |
| $e_b$              | Efficiency of Existing Boiler                       | -        | 0.92          |
| $CEF_{NG}$         | CO2 Emission Coefficientof Natural Gas incineration | tC/TJ    | 15.3          |
| $FCO_{NG}$         | Oxidation Coefficientof Natural Gas                 | tC/TJ    | 0.995         |
| $CEO_y$            | Electricity by Co-generation                        | MWh/year | 55188         |
| EF <sub>elec</sub> | CO2 Emission Coefficient of Grid Power              | tCO2/MWh | 0.891         |

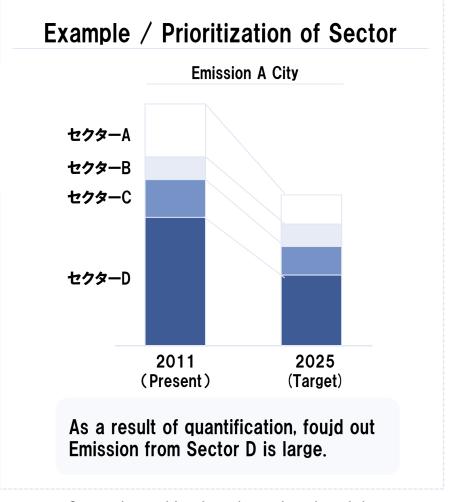


# 7. Quantification of CO2 Emission Reduction ~2 type of methods~ CO2排出量削減効果の定量化手法~2つの手法~



2 Type of Methods exist for quantification of GHG emission. One is Inventory method and the other is Project Method. It is necessary to consider which method will be used, based on the objective of Quantification and the characteristics of Methods.


| Method          |                                   | Regulation, Rule       |                                       | Characteristics                                                |                                                                                                    |
|-----------------|-----------------------------------|------------------------|---------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                 |                                   | Global level           | Country Level                         | Municipality Level                                             | Characteristics                                                                                    |
| Govern<br>emnet | Central<br>Govern<br>emnet        | GHGs Inventory         |                                       |                                                                | holistic evaluation using                                                                          |
|                 | Govern                            | Bilan Carbone<br>ICLEI | Manual for New Action<br>Plan         |                                                                | municipality's statistics,<br>invoice data of each<br>company<br>• imprecise<br>• Risk of non data |
|                 | Organiz<br>ation<br>(Compa<br>ny) |                        | -ETS<br>JVETS                         |                                                                | <ul> <li>Impossible to calculate<br/>detailed breakdown</li> </ul>                                 |
| Project         | ··•,                              | GHG Protocol           | Domestic Credit<br>Mechanism<br>J-VER | Emission Trading System at<br>Tokyo Metropolitan<br>Government | <ul> <li>Precise</li> <li>Difficult to apply for vast range</li> </ul>                             |


# understand macro trend of GHG emission reduction.

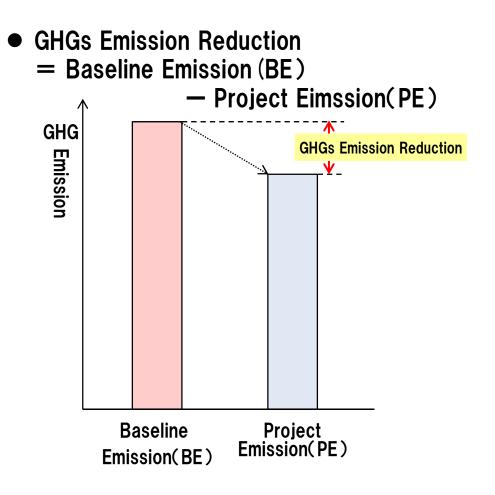
Merit of GHG Emission Reduction

8. Characteristics of Inventory Method インベントリー方式の特徴

It is possible for municipalities (or companies) to prioritize the program and to






NTTDETE

The amount of GHGs emission reduction with MRV (Measurement, Reporting and Verification) could be used as Credit and/or Appeal

• Merit of Disclosing Quantity of Emission Reduction

**Necessity of MRV** 

- ✓ Appeal
- ✓ Credit
- ✓ One of the Input for Attainment of Each Company's target



TDETE

10. Example of Trial Calculation / CO2 Reduction (Putrajaya) 1

プトラジャにおけるCO2排出量削減効果の試算例 ~アクションプラン~

### Policy 5 Moving Putrajaya towards Green City

5.2 Application of green technology, infrastructure and practices in city planning and management

5.3 Adopting Sustainable Building Practices

5.4 Establish model green community committed to reduction of carbon footprint

### Action 3 Cutting-Edge Sustainable Buildings

3-1 Eco friendly Building Materials & Energy Efficient Labeling for Equipment & Appliances

3-2 Building Energy Management System (BEMS)

3-3 Eco friendly Building Materials

3-4 To integrate Recycling facilities in building design

3-5 Impose Building Rating System to all Buildings

### Action 4 Low-carbon Lifestyle

4-1 Energy Efficient Appliances in Homes

4-2 HEMS (Home Energy Management System)

4-4 To integrate Recycling facilities in High rise residential building designs

### Action 5 More & More Renewable Energy

5-1 Photovoltaic power generation and utilization

5-2 Alternative fuel source from Solar assisted power generation

5-3 Explore possibilities of utilizing Solar Thermal

5-4 Biomass production & utilization

5-5 Research & Development for RE for Local consumption

### Action 7 Cooler Urban Structure and Building

7-3 Reflection of Solar Radiation

7-4 Building

### Action 8 Community and individual action to reduce urban temperature

8-1 To Reduce Artificial Heat exhaust

8-4 Human parameters (Behavior change)

### Action 12 Green Incentives and Capacity Building

12-5 Tax Incentives for Energy Efficiency

(出所:「NEDO報告書 国際エネルギー消費効率化等技術・システム実 証事業 ~基礎事業 マレーシアにおけるグリーンタウンシップ構 想実現のための基礎調査~」) (平成24年3月)

NTTDETE

NTTData

**10. Example of Trial Calculation / CO2 Reduction (Putrajaya)** ② プトラジャにおけるCO2排出量削減効果の試算例

| Countermeasure                   | Category                         | Emission Reduction<br>(Contribution ratio) |  |
|----------------------------------|----------------------------------|--------------------------------------------|--|
| Introduction of                  | Facilities                       | 556.1 kt-CO <sub>2</sub> (69%)             |  |
| energy-efficient<br>appliances   | District Cooling                 |                                            |  |
| BEMS / Building                  | Management System                |                                            |  |
| insulation / Energy              | Residences                       | 200.6 kt-CO2 (25%)                         |  |
| saving behavior                  | Human Behavior                   |                                            |  |
| Photovoltaic power<br>generation | Photovoltaic Power<br>Generation | 50.3 kt-CO <sub>2</sub> (6%)               |  |
| Others                           | Other Renewable Energy           | -                                          |  |

(出所:「NEDO報告書 国際エネルギー消費効率化等技術・システム実 証事業 ~基礎事業 マレーシアにおけるグリーンタウンシップ構 想実現のための基礎調査~」) (平成24年3月)