Thailand LCS Scenarios: A Roadmap to Peak CO₂

International Research Network for Low Carbon Societies (LCS-RNet) and the Low Carbon Asia Research Network (LoCARNNet)
22-25 July 2013
Yokohama, Japan

Bundit Limmeechokchai
Sirindhorn International Institute of Technology
Thammasat University

Low-Carbon Society Vision 2030
Thailand

1st LCS Scenario by AIM/ExSS

Roadmap to Low Carbon
Thailand towards 2050

2nd LCS Roadmap by AIM/Enduse
Objectives

- Appropriate CO₂ reduction target in 2020 (Thailand’s NAMA has been proposed for CO₂ reduction upto 20%)

- LCS Roadmap to Low Carbon Thailand 2050 (CO₂ reduction upto 29.2%)

- Peak CO₂ Scenario within 2050 for Thailand (CO₂ reduction upto 60.2%)
Methodology (AIM/Enduse), NIES

Energy
- Oil
- Coal
- Gas
- Solar
- (Electricity)

Energy Technology
- Boiler
- Power generation
- Blast furnace
- Air conditioner
- Automobile

Energy Services
- Lighting
- Steel products
- Cooling
- Transportation

Energy Consumption CO₂ Emissions

Technology

Service Demand

Energy Database
- Energy type
- Energy price
- Energy constraints
- CO₂ emission factor

Technology Database
- Technology price
- Energy consumption
- Service supplied
- Share
- Lifetime

Socio-economic Scenario
- Population growth
- Economic growth
- Industrial structure
- Employees
- Lifetime

National Circumstance

Population (Millions)

No. of HH (Millions)

Energy use (Mtoe)

CO₂ emission (Mt-CO₂)

Per Capita GDP

Gross output (bil. Baht)

Thousand USD per Capita
Demographic and Economic Assumptions

Average population growth
- Historical data (2006–2011)
- 0.51% p.a. increase (2012–2050)

Number of household
- Historical data (2006–2011)
- 2.89% p.a. increase (2012–2050)

Floor space
- 4.02% p.a. increase

Gross Domestic Products (GDP)
- Follows PDP2010 (2011–2023)
- 3.92% p.a. increase (2024–2050)

GDP share by industry
- Primary industry (9.68%)
- Secondary industry (37.37%)
- Tertiary industry (52.95%)

Modal share of passenger transport
- Road (97.69%), Rail (0.25%), Air (2.06%)

Modal share of freight transport
- Road (6.39%), Rail (0.01%), Water (91.85%), Air (1.76%)

<table>
<thead>
<tr>
<th>Socio-economic indicators</th>
<th>2005</th>
<th>2050</th>
<th>2050/2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population (Person)</td>
<td>62,418,054</td>
<td>78,071,984</td>
<td>1.25</td>
</tr>
<tr>
<td>No. of Households</td>
<td>19,016,784</td>
<td>24,078,504</td>
<td>3.55</td>
</tr>
<tr>
<td>GDP (Million USD)</td>
<td>169,870</td>
<td>1,247,449</td>
<td>7.34</td>
</tr>
<tr>
<td>Gross output (Million USD)</td>
<td>407,157</td>
<td>2,939,643</td>
<td>7.23</td>
</tr>
<tr>
<td>Primary industry</td>
<td>43,286</td>
<td>284,499</td>
<td>6.57</td>
</tr>
<tr>
<td>Secondary industry</td>
<td>146,182</td>
<td>1,098,631</td>
<td>7.52</td>
</tr>
<tr>
<td>Tertiary industry</td>
<td>217,689</td>
<td>1,556,506</td>
<td>7.15</td>
</tr>
<tr>
<td>Per capita GDP (USD/Capita)</td>
<td>2,721</td>
<td>15,978</td>
<td>5.87</td>
</tr>
<tr>
<td>Floor space for commercial (Million m²)</td>
<td>88</td>
<td>519</td>
<td>5.90</td>
</tr>
<tr>
<td>Passenger transport demand (Million passenger-km)</td>
<td>361,819</td>
<td>1,201,951</td>
<td>3.32</td>
</tr>
<tr>
<td>Freight transport demand (Million tone-km)</td>
<td>1,826,631</td>
<td>9,701,505</td>
<td>5.31</td>
</tr>
</tbody>
</table>

Demographic and Economic Assumptions

- In 2010, Thailand’s population was estimated about 63,723,953 (21st).

- Its national GDP (PPP) in 2008 was estimated about $547.060 billion (24th).

- In 2011, total energy supply in Thailand was 128,092 ktoe, and rose 3.0% from 2010, with the net import of 54,949 ktoe, i.e., 42.9% of the total energy supply, while the domestic production was 73,143 ktoe (i.e., 57.1%).

- In 2011, bio-fuel production was totaled 3,729 ktoe.
Demographic and Economic Assumptions

• In 2005, final energy consumption of the transportation sector was 23,491 ktoe or 37.6% of the total, followed by the industrial sector (22,920 ktoe; 36.7%), residential and commercial sector (12,779 ktoe; 20.5%), and agricultural sector (3,207 ktoe; 5.1%).

• Presently, this pattern has still unchanged.

• In terms of greenhouse gas (GHG) emissions, the power generation sector was the highest CO\textsubscript{2} emissions sector with 75,956 kt-CO\textsubscript{2}, accounting for about 39.6% of overall CO\textsubscript{2} emissions in Thailand, followed by the transport sector (56,318 kt-CO\textsubscript{2}; 29.3%) and the industry sector (43,479 kt-CO\textsubscript{2}; 22.6%) in 2005.
Roadmap to Low Carbon Thailand

Final Energy Demand

Primary Energy Demand by fuel type in 2050

GHG Emissions in 2050 (LCS)
• In the 2050BAU scenario, the GHG emissions would increase to 769,896 kt-CO$_2$.
• That is 4.6 times higher than the base year 2005.
• According to the proposed LCS roadmap for sustainable Thailand towards 2050, and by adopting the selected feasible GHG mitigation measures available by 2020, 2030 and 2050, the GHG emissions in the 2050LCS scenario can be decreased by approximately 29.2% to 551,575 kt-CO$_2$.
• However, the Thailand’s LCS roadmap, which is based on selected feasible GHG mitigation measures, could not achieve the 2 degree target.

Peak CO$_2$ Scenario

• Rigorous LCS actions to achieve the 2 degree target within 2050 are proposed.
• Results from the AIM/Enduse analyses show that Thailand could meet the peak CO$_2$ emissions during 2035-2045 at 352,285 kt-CO$_2$.
• The peak CO$_2$ scenario shows that CO$_2$ can be reduced by approximately 60.2% to 303,497 kt-CO$_2$.
GHG Emissions in 2050 (Peak CO₂)

GHG Mitigation by 2050 (Peak CO₂)

Total GHG Emissions 2005-2050 (Peak CO₂)
Thailand Low Carbon Peak Scenario

- These rigorous LCS actions include both supply-side and demand-side actions such as increasing the use of carbon capture storage (CCS) in power generation and industries, more utilization of bio-fuels, solar power, wind power, promoting modal shift in transportation, and increasing energy efficiency in buildings and industries.
Low Carbon Peak
Action 2: GREEN INDUSTRY

Efficiency improvement
- Heating efficiency improvement
- Electrical efficiency improvement

CCS

CHP

2nd and 3rd Generation Biomass

Advanced technologies
- Heating advanced technologies
- Advanced electrical technologies

Low Carbon Peak
Action 3: Smart Passenger Transport

Bus sector by each technology
- Modal shift electric railway
- Fuel switching (E85, LPG, CNG)

Motorcycle
- EV

Passenger
- Hybrid (battery)
- Fuel switching (E85, LPG, CNG)

Sedan
- Hybrid (battery)
- Plug-in hybrid
- EV
- Fuel switching (E85, LPG, CNG)
Low Carbon Peak

Action 4: Effective Freight Transport

- **Pickup**
 - Diesel Hybrid (battery)
 - Gasoline Hybrid (battery)
 - Second generation bio-fuel (B10, B20)
 - Fuel switching (E85, LPG, CNG)

- **Truck**
 - Second generation bio-fuel (B10, B20)
 - Modal shift to Rail

Action 5: Thai Style Comfortable Houses

- **Cooking**
 - Higher efficiency stove
 - Renewable stove

- **Lighting**
 - Compact Fluorescent
 - LED Lamp
 - T5

- **Cooling**
 - A/C and refrigerator COP6
 - A/C and refrigerator COP9
 - Building codes

Action 6: Modern Buildings

- **Lighting**
 - Compact Fluorescent
 - LED Lamp
 - T5

- **Cooling**
 - A/C and refrigerator COP6
 - A/C and refrigerator COP9
 - Building codes
Conclusions

- These countermeasures will result in transformational changes in both supply and demand sides in Thailand.
- In order to achieve this GHG mitigation target for Thailand, i) the LCS capacity building, ii) the feed-in tariff scheme for renewable electricity, iii) enforcement of energy efficiency laws in buildings and industries, iv) co-funding of the LCS policies and projects are of necessity.
- The 2 degree target in the future years will not be achieved if these countermeasures are not planned for implementation in the early stage.

どうもありがとう
Thank You