

Assessing and Modeling of Sustainable Rice Production Systems: A Multi-Stakeholder Perspective

Ranjan Roy*, Yokohama City University

Introduction

Rice is the staple food for more than half of the world's population and its production is the most important source of employment and income for rural Asians. In Bangladesh, rice is the main crop, covering about 75% of the total cropped area and it employs almost 50% of the country's labor force, and contributes to about 10% of GDP. A substantial number of studies indicate that present rice production is not sustainable in Bangladesh in terms of environmental soundness, economic resilience (or capability) and social development.

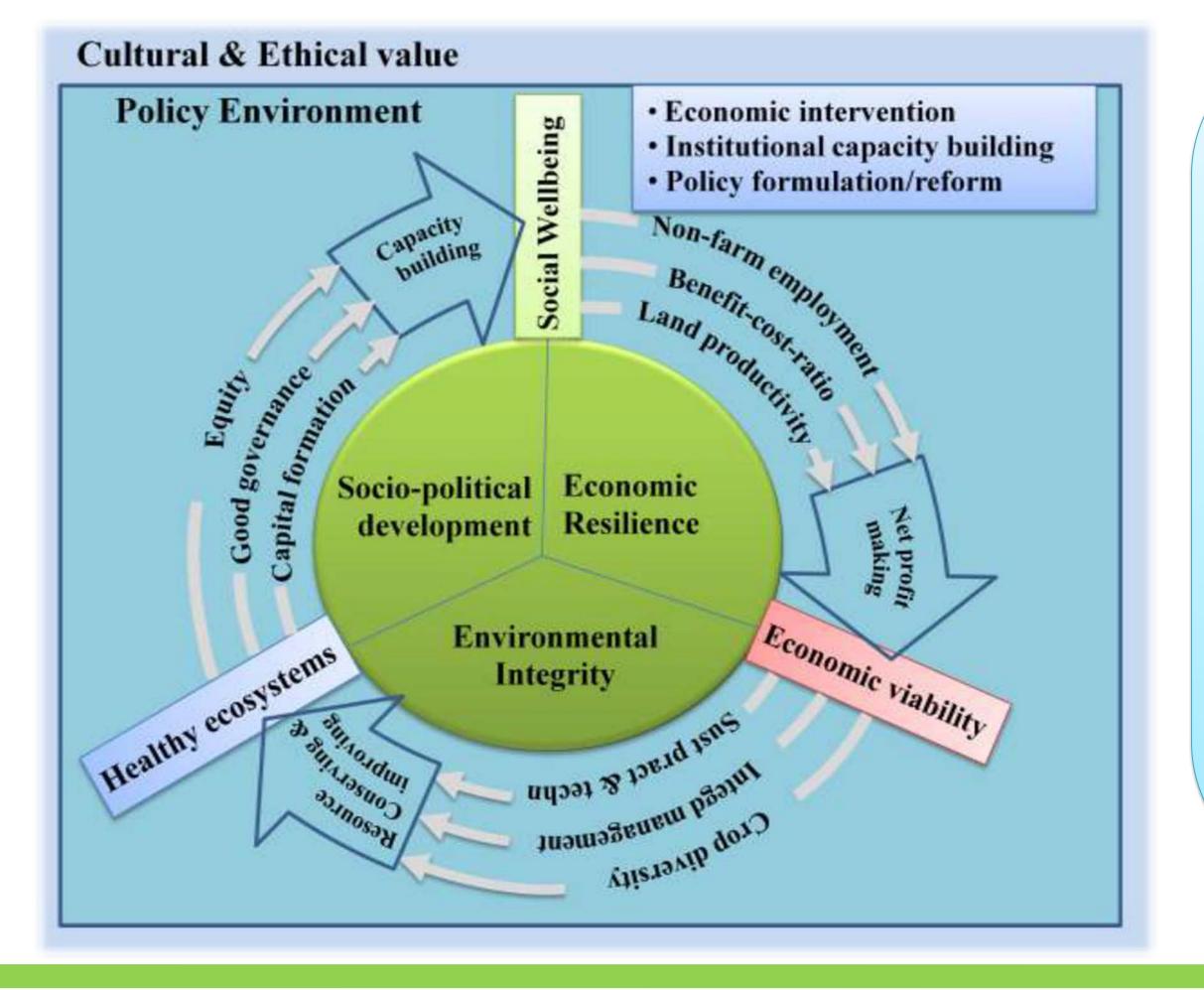
The study addresses three issues, namely development a framework for indicator development, assessment of sustainability of rice production systems, and development of a model for sustainable rice production in Bangladesh.

Normalisation				
Max-min $\mu = x - min(x)$	Where, <i>li</i> , <i>x</i> , and <i>wi</i> are the			
Max-min, $li = \frac{x - min(x)}{max(x) - min(x)}$	normalised, raw value, and			
	weight of indicator. In			
Standardisation, $li = \frac{(x - \mu)}{\sigma}$	$\frac{\mu}{\sigma}$ addition, max (x) and min			
Aggregation,	(x), μ , and σ are the			
I incore n	maximum and minimum			
Linear, $Index = \sum_{i=1}^{n} li.wi$	value, mean, and standard			
i=1 n	deviation of <i>x</i> .			
Geometric, $Index = \prod li^{wi}$				
i=1				

Methodology for composite indicator (CI) construction

Stop and stage

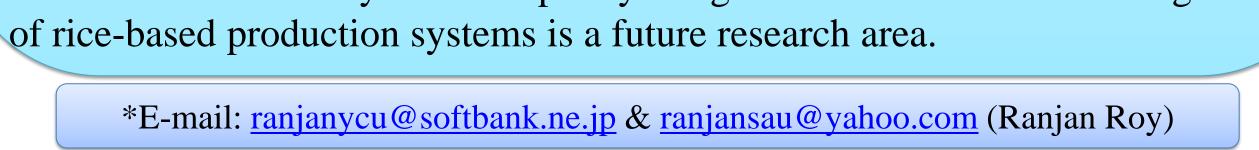
Tools/Mathod applied Output


Result I: Indicator development framework

Step and stage	Tools/Method applied	Output		Defining farm	Understanding	
Step 5: Index construction,	Correlation, path and	Developing a meaningful		production	contextual	Setting
assessing internal consistency	stepwise multiple	CI and determining		sustainability	situation	and str
and robustness of CI	regression analysis	policy options	New goals can be	****		of indi
Step 4: Normalisation,	Max-min and	Making data comparable,	set for changing farming systems	Developing	Establishing	Discus
weighting, and aggregation	standardization method,	assessing weight of	and priorities	indicator	study context	with ex
	factor analysis, linear &	indicators & aggregating		Evaluating	Exploring	
	geometric aggregation	them	Developing nev		information	Prepar initial
Step 3: Data screening,	Skewness, Z-score,	Ensuring quality and	indicators	quality	and gathering	indica
bivariate and multivariate	correlation and principal	structure of the data set	Errolmotin o			
analysis	component analysis	for methods choices	Evaluating indicator's three	Determining	Colculating &	Condu
Step 2: Data collection	Survey and key	Preparing a complete	qualities by	potential	scrutinizing &	survey
	informant interview	data set	FGD	-	indicators	
Step 1: Developing theoretical	Top-down and bottom-	Developing a set of				
framework and indicator	up approaches	indicators				

Result II: Assessment of rice production sustainability

Result III: Model of rice production sustainability



Conclusion and policy implications

About half of the growers face several environmental, economic, and socio-political challenges. The irrigated and rainfed upland rice production systems were found to be the most and least sustainable, respectively. The rainfed lowland production system was more environmentally sound, followed by rainfed upland and irrigated rice. The findings of this study are expected to have knock-on effects on "green agriculture and growth", a main strategy for promoting "green economy" in Asia and the Pacific.

Policies should emphasize: increasing land productivity by adopting a multi-pronged approach, pervasively disseminating and utilizing resource conserving practices and technologies, developing grower's human capital, and valuating integrated farming practices and environmental services. Moreover, creating a favourable environment for better policy implementation is imperative for farming sustainability transition.

In terms of the overarching policy implications for sustainable rice production systems, considering major 3 out of 5 rice growing ecosystems is a limitation of this study. Climate policy integration for sustainable management

