

A Systematic Review of Open Waste Burning in Southeast Asian Countries for Policy Making

Bimastyaji Surya Ramadan, Premakumara Jagath Dickella Gamaralalage, Toru Matsumoto

Scientific and Evidence-based Policy Making to Reduce Open Waste Burning in Asia

Assessment of Climate Impact of **Black Carbon Emissions from Open Burning of Solid Waste in Asian Cities**

Development of City Action Plans to Reduce GHGs and SLCPs from Municipal Solid Waste Management (MSWM) in Southeast Asia

JUNE 2019

TRAINING CURRICULUM Integrating Air Pollution and Climate Change Planning in Cities in Asia

(1)

OPEN WASTE BURNING IN ASIAN CITIES: CHALLENGES AND OPPORTUNITIES

autopake no.

NOON 1

Open Surving of Municipal Solid . In much, the open burning of MIM per harves; is see shift Vision (MGW) is a carrier practice, represents one of the most aspecially is developing countries: significant poliution and clinete with instaguate solid woots change problems in developing countries. While various studies an remissionment southing (Shigh et al. 2016 Hatumarothiaka at al., 20NL the generation of persistent The main reasons are that it is the arganic policiaria (PDPa) and sheapent and explant mathem of other becordous substances sold values reduction and minimaling UPUTAR and UPUTO, 20191, there is INSW, appeciate for residents in wheek of scientific evidence on here. allies with no second in organized BC unisations from open maste burning impiral allevate charge. nethectory services. Contently, two Allian paople This requires axient/ic attacks piebally have an efficial works including. the quantitative influences services, and the woole. and of such environment of some three billion route is aither in this regard, (\$25-CDF has been danged or subject to uncostrolled working with its partners to shalls Inservice Circular 2018 BC are instants and related elimets Open Auroing of MMV hysically impacies have speet minds harvers is associat Apine other. This first occurs under relatively low temperatures, which units mebinar, held on 22 April 2022 and algolitopet amounts of pollutants, en-organized by three parties - the especially particulate marter (PM Institute for Stabil Electronesetal (PMD, PH2.5), Mark cartiery (ECL Smithegies-IGES Central organic carbon IOCL and passeum Enlaberating with UNEP on selicion reports in date statistic Technologies Environmental. NOvi, carbon manualde KEL **BBES-DCET**), the Distoite and methane (CR4) and non-methane Disay Air Coalities (SCAD, and the valotta erazate rempeuerda **United Nations Industrial** (MMYDE) (UNEP, 30111. In seldion. Benefasiment Organization 3,48001 open burning of waste results in - skeed to share the results of the el wide-ranging rescurch mult on span warre patentially housidoge satisfamore surving to Asiat Dilles, including as population experiences of case study cline, as hedrocarbons, mercary, arbenic, well as stuble panel discussions fine dust, sulphur satisfies and involving experts from BTE, COAE inducedure and make of which DARK. INER-DORT and are took and harmful to the appearance officials from Padena antiritement and human health **Dits Indonatola, and Disang Same** SUBSTAR and LINESS 2019 **Dits Cardeolia**

a case where analysis NUMBER OF ADAMA STREET part in the space time entry, and

Objectives and Methodologies

Objectives

- 1. Determining **the current status of open burning** (municipal waste, agriculture, forest, and others) in SEA countries and its impact on environment and health of human beings
- 2. Analysing **factors** of OWB practices and **stakeholder's initiatives** to stop burning practices
- 3. Assessing the appropriate **policy recommendation** for reducing open waste burning in SEA countries

Methodologies

- 1. Literature review by using PRISMA methodology. Metadata generated from SCOPUS database using keywords of "**Open Burning**".
- 2. Abstract title, and other metadata were analyzed using VOSviewer software to get the current **research direction** and finding the **gaps**
- 3. At least **152 documents** were assessed using qualitative analysis to identify the factors, initiatives, and assess policy recommendation at country level

Occurrence Terms in Title and Abstracts

- Settings
- Binary counting
- Minimum number of occurrences = 5 (236 meet threshold)

A VOSviewer

image
<td

Through the maps we can see 5 clusters can be generated from the terms. Higher occurrences of terms are displayed

- 1. **Red** = waste, practice, reduction, approach, inventory (**waste management approach**)
- 2. **Green** = problem, health, Malaysia, Northern Thailand, haze (transboundary haze)
- 3. Yellow = biomass burning, pm2.5, ratio, particle. size (biomass burning)
- 4. Blue = residue, air pollutant, CO₂, Vietnam, emission factor (**crop residue burning**)
- 5. **Purple** = sample, soil, treatment, e-waste, ash (e-waste burning)

Related to the publication year, there are also some findings:

- 1. The older terms is found in the municipal solid waste, haze and satellite burning. Indicating the concern of researchers on the **transboundary air pollutant** caused by open burning.
- 2. In the middle publication year (2017-2019), some terms such as biomass burning, community, and approach are found. Indicating the researchers were shifting to **biomass burning activity and its solution**.
- 3. Current research are found to be focused on **health impact** on crop residue burning especially in Vietnam area.

Occurrence Keywords

- Settings
- Full counting
- Minimum number of occurrences = 3(39 meet term threshold)

Through the maps we can see 7 clusters can be generated from the keywords provided by scientific papers.

- Red = Forest fire 1.
- Green = Rice straw burning 2.
- Dark Blue = Fire hotspot in ASEAN 3.
- Yellow = Health risk of open burning 4.
- **Purple** = Transboundary pollution of biomass burning 5.
- **Blue** = e-waste burning 6.
- Orange = Municipal solid waste burning 7.

Related to the publication year, there are also some findings:

- The older terms found such as municipal solid waste, biomass open 1. burning, Thailand, and modis (remote sensing method). Indicating the concern of researchers on the biomass burning.
- In the middle publication year (2017-2019), some terms such as 2. biomass burning, pm10, and e-waste are found. Indicating the researchers were shifting to crop residue burning.
- Current research are found to be focused on **health risk assessment** 3. caused by forest burning.

Number of Country Affiliations

Settings

- Full counting
- Minimum number of documents of a country = 2 (18 meet threshold)

Some **conclusions** from the graph can be drawn

- 1. Thailand is the leading countries for research in open burning in ASEAN, while Indonesia is the second and Japan is the third.
- 2. There is an anomaly in the citations of documents from Indonesia and Malaysia, probably the documents are not published in high impact journal or just a conference proceeding or there is another reasons(?)
- 3. European researchers are found to be interested to studies about open burning in ASEAN.
- 4. Some clusters are found (showing in different colors) which showing collaboration between the affiliation country.

*Incense burning, Hungry Ghost festival, etc.

Health Impact

*Sorted from the highest to lowest contributor

Waste burned*	Spesific sources / chemical characteristics	Pathway	Health impact	Study location	References
Biomass (forest and crop residue)	PM10-bound PAHs	Inhalation	Cancer risk from PAHs exposure	Thailand	Wiriya et al., 2013
Crop residue (maize)	PM10-bound PAHs	Inhalation	Cancer risk from PAHs exposure	Thailand	Morknoy et al., 2017
1. Forest fire 2. Crop residue	Black carbon Inhalation The same risk with passively smoked cigarette		The same risk with passively smoked cigarette	Thailand	Pani et al., 2019
Forest fire	PM2.5	Inhalation	Cancer risk from PAHs exposure	Thailand	Chantara et al., 2020
Crop residue	PM2.5	Inhalation	Lower respiratory infections, ischemic heart diseases (IHD) = Long-term mortality / non-accidental deaths	Thailand	Chi and Oanh, 2020
Biomass (forest, crop residue, and grassland)	PM2.5	Inhalation	Stroke burden , ischemic heart disease (IHD), lung cancer (LC), and chronic obstructive pulmonary disease (COPD) = premature death	Thailand	Punsompong et al., 2021
1. Forest fire 2. Crop residue	n.d.	Inhalation	Respiratory disease, such as COPD and lung cancer	Thailand	Kaewrat et al., 2022
1. Forest fire 2. Crop residue	PM-bound PAHs during haze events	Inhalation	Respiratory health risks	Thailand	Insian et al., 2022

Health Impact (Cont.)

*Sorted from the highest to lowest contributor

.5	Inhalation Inhalation	Cancer risk from PAHs exposure Respiratory morbidity, ischemic heart disease (IHD), lung cancer (LC), chronic obstructive pulmonary disease (COPD), cardiovascular disease	Vietnam Laos, Myanmar, Cambodia, Thailand	Pham et al., 2019 Thao et al., 2022
-	Inhalation	lung cancer (LC), chronic obstructive pulmonary	Cambodia,	,
			Thailand, Vietnam	
.5-bound D/Fs (dioxin)	Ingestion, diet	Cancer risk from dioxin exposure	Thailand, Vietnam, Taiwan	Chi et al., 2022
,	Ingestion, inhalation, dermal	Autism, affect brain development, promote the growth of cancer cells, protein denaturation, membrane cells malfunction	n.d.	Chean-Yiing et al., 2022
	Inhalation, ingestion, diet	Non-cancer risk (bioaccumulation) caused by metals contamination. Other adverse effect related to the emitted pollutant.	Vietnam	Hoang et al., 2022
ir e	n (PAHs), retardant,	n (PAHs), Inhalation, retardant, ingestion,	n (PAHs), Inhalation, retardant, ingestion, diet Non-cancer risk (bioaccumulation) caused by metals contamination. Other adverse effect related to the emitted pollutant.	n (PAHs), Inhalation, Non-cancer risk (bioaccumulation) caused by metals Vietnam retardant, ingestion, contamination. Other adverse effect related to the

Environmental Impact

Study location	Fuel Type	Emission Factor (dry biomass)		Total Annual Emi (Mt)	ssion Estimation	References	
		$CO_2 (g kg^{-1})$	BC (g kg-1)	$CO_{2}(Mt)$	BC (kt)		
Thailand	Sugarcane biomass (pre- and post-harvesting)	1,515	-	Pre-harvest 9.80 Post-harvest 12.7	-	Sompoon et al., 2014	
Indonesia	Rice straw	-	0.939 ± 0.417	-	-	Hafidawati et al., 2017	
Thailand	Rice straw	1,177 ± 140	0.53	5.34	2 1 ± 1	Junpen et al., 2018	
Vietnam	Rice straw	1,177	0.51	3.82	1.6	Le et al., 2020	
Thailand	Rice straw	1,247 ± 190	-	8.23	-	Hong Phuong et al., 2022	
Indonesia	Savanna / shrub land	1,613	0.48	Total emission =	Total emission =	Permadi et al., 2013	
	Peat land / mangrove forest	1,703	0.57	57.28	0.24	(2007 data)	
	MSW	1,453	0.65				
	Tropical forest	1,580	0.66				
Thailand	Cropland	1,585	0.75	Total emission = Myanmar 64 ± 12	<i>Total emission</i> = Myanmar 20 ± 12	Junpen et al., 2020 (2015 data)	
	Forestland	1,643	0.52	Cambodia 45 ± 8	Cambodia 13 ± 7	(2015 uala)	
	Shrubland / savanna	1,686	0.37	Laos 13 ± 2 Thailand 27 ± 9 Vietnam 30 ± 12	Laos 4 ± 3 Thailand 10 ± 5 Vietnam 13 ± 6	10	

Environmental Impact (Cont.)

Study location	Fuel Type	Emission Fa biomass)	ctor (dry	Total Annual Emi (Mt)	ission Estimation	References
		CO ₂ (g kg ⁻¹)	BC (g kg ⁻¹)	$CO_{2}(Mt)$	BC (kt)	
ASEAN	Crop residue (RS = rice straw, M = maize, S = sugarcane, OCR = other crop residue)	RS 1,177 M 1,350 S 1,130 OCR 1,130	RS 3.1 M 2.2 S 3.3 OCR 0.7	172	74	Oanh et al., 2018
	Forest	-	-	655	220	
Vientianne, Laos	MSW	1,453 (wet basis)	-	0.027	-	Babel and Vilaysouk, 2016
Luangprabang, Laos	MSW	1,453 (wet basis)	5.5	0.005	0.007	Vilaysouk and Babel, 2017
Depok City, Indonesia	MSW	801.2	-	0.26	-	Kristanto and Koven, 2019
Thailand	MSW	n/a (IPCC calculation)		0.499	-	Pansuk et al., 2018
Philippines	MSW	n/a (IPCC calculation)	0.65	944.69 (uncollected waste)	1.63	Premakumara et al., 2018
	Emission from MSW in ASEAN The number of waste burned l		-		Emission from MSV same potential of Be straw residue burn	C emitted from rice 11

Regional Outlook

In avg, **57%** of waste **are not collected** in ASEAN countries which subjected to improper waste disposal

Country	Population ^a	GDPª (billion USD)	GDP per Capitaª (USD)	CO2 Emissions ^a (t per capita)	Total GHG Emissionsª (kt CO2-eq)	Avg Waste Generation (kg/cap/day)	Waste Collection Efficiency (%)
Singapore	5,453,566	360.90	66,176.4	8.3	67,230	1.10 ^b ; 0.94 ^c	100 ^g
Brunei Darussalam	441,532	13.21	29,927	16.1	9,300	0.66 ^b ; 1.40 ^c	50-70 ^h
Malaysia	32,776,195	354,88	10,827.3	7.9	313,020	0.81 ^b ; 0.90 ^c	66-90 ^h
Thailand	69,950,844	438.62	6,270.4	3.8	422,090	0.64 ^{b,c}	59 ⁿ
Indonesia	276,361,788	1,070.00	3,855.8	2.3	1,002,370	0.76 ^b ; 0.49 ^c	65 ⁱ
Vietnam	98,168,829	331.13	3,373.1	3.5	450,150	0.61 ^b ; 0.41 ^c	бо ^е
Philippines	111,046,910	378.96	3,412.6	1.3	234,280	0.52 ^b ; 0.40 ^f	65 ^f
Papua New Guinea*	9,119,005	24,21	2,655.2	0.9	22,410	0.41 ^d	n/a
Laos	7,379,358	19.05	2,582.2	2.6	29,280	0.55 ^b ; 0.64 ^c	40-50 ^j
East Timor*	1,343,875	2.19	1,626.4	0.5	5,910	0.45 ^e	55 ^k
Cambodia	16,946,446	23.72	1,399.8	1.0	40,060	0.52 ^b	72 ¹
Myanmar	54,806,014	70.81	1,292.1	0.7	133,250	0.45 ^b ; 0.44 ^m	53-84 ^m

^adata.worldbank.org accessed Nov 26, 2022; GDP is calculated using constant USD from 2015; ^bNguyen Ngoc et al. (2009); ^cKawai and Tasaki (2016); ^dKarak et al. (2012); ^eWoodruff (2014); ^fPremakumara et al. (2018); ^gJerin et al. (2022); ^hFaulstich et al. (2011); ⁱhttps://sipsn.menlhk.go.id/sipsn/ accessed Nov 27, 2022; ^jGlobal Green Growth Institute (2022); ^kXimenes and Maryono (2021); ^lPheakdey et al. (2022); ^mThe World Bank Infographic (2019); ^mPansuk et al. (2018); *Observer countries

OWB Profiles

Around **40%** of waste is burned worldwide (Wiedinmyer et al., 2014)

Location	Average waste	Total waste	Fraction	Compo	osition (%)						References
	generation (Mt/year)	burning (kt/year)	of open burning (%)	Food waste	Garden waste	Plastic	Paper	Metal and Glass	Textile and Rubber	Others/ Inert	
Vientiane City, Laos	0.23	35.18	15	34.0	30.0	12.0	7.0	8.0	8.0	1.0	Babel and Vilaysouk, 2016
Luangprabang City, Laos	0.03	2.64	9	39.0	31.0	8.0	6.0	2.0	5.0	9.0	Vilaysouk and Babel, 2017
Depok City, Indonesia	0.41	25.55	6.3	73.0	3.7	3.6	7.1	2.6	3.6	6.4	Kristanto and Koven, 2019
Semarang City, Indonesia	0.61	58.80	9.7	53.9 0.2	- 73·4	21.5 17.5	10.9 4·3	8.7 0.3	- 3.3	5.0 1.0	Hadiwididodo et al., 2022 Ramadan et al., 2022*
Thailand	26.20	3,430	13	- 10.3	48.0 17.4	15.0 36.3	15.0 0.9	10.0 4·7	- 18.1	14.0 12.2	Pansuk et al., 2018*
Philippines	14.86	2,602	17.5	52	L	28.0			20.0 (include s like e-waste, he and bulky wast	ealthcare,	Premakumara et al., 2018

*The italic number represents the composition of burned waste pile (below) which is different with the municipal waste composition (above)

Please noted that **plastic burning** especially **PET and Polystyrene** emit the higher black carbon than other type of waste (Reyna-bensusan et al., 2019). See the **emission factors** based on labscale measurement (g kg⁻¹)

	Paper and Cardboard		Textiles	LDPE	HDPE	PET	Polystyrene	Mixed waste*	
	0.02	0.5	9	0.1	0.2	46	53	4.7	
*Mexico case study									

E-waste Burning

Key factors of OWB Practices

Technical factors –

Non-technical factors -

- Lack of proper domestic waste disposal (Kong et al., 2020)
- Lack of regulatory / law enforcement (Kong et al., 2020)
- Inadequate waste transportation infrastructure (Ramadan et al., 2022b)
- Bigger space for waste dumping in the backyard (Ramadan et al., 2022b)
- Distance between landfill to the service area (Ramadan et al., 2022b)
- Lack of environmental health awareness, attitude, and practices (Kong et al., 2020)
- The need of heat from burning activities (Ramadan et al., 2022a)
- Lack of motivation to sort waste (Ramadan et al., 2022b)
- Exceeding volume of waste due to some specific event (Ramadan et al., 2022b)
- Local people's rejection of the establishment of waste collection facility (Ramadan et al., 2022b)
- Impatience habits in waiting collection services (Ramadan et al., 2022b)

Initiatives

Decentralized waste management system, case of Phillippines (Premakumara et al. 2018)

• Localized approach for implementing MSWM policy is useful to reduce open burning. Law/policy enforcement and commitment from the national to local level could reduce the burning activity.

Community empowerment (Brotosusilo and Naldi, 2021 and Budihardjo et al. 2022) • In many places in Indonesia and Thailand, waste management which is empowering local actors to manage their own waste was introduced and strengthened in the national policy. This initiatives are useful to boost recycling thus reducing waste burning practices

Zero burning policy in Upper Northern Thailand (Yabueng et al. 2020) • To reduce the biomass burning event in Thailand, the government enforced the policy during February to April (dry season) since 2016. The biomass burning hotspot reduced in the implementation of the policy, while this situation could also be done for open burning of waste.

Summary and Policy Recommendations

Summary

- Many researchers are focusing on biomass and crop residue burning. While the information of other burning practices such as MSW and e-waste burning are lacking.
- MSW burning is potentially emitted significant number of pollutant with the similar or even higher impact than biomass burning.
- More work in the MSW and e-waste burning field are needed to fill the scientific gaps and baseline study for appropriate policy recommendation.

Recommendation

- Improvement of collection and transportation service
- Regular inspection reinforcement
- Establishment of policies both local and national to reduce burning practice
- Establishment of community waste management unit to do recycling activities
- Establishment of community education and awareness campaign
- Promoting recycling activities of informal actors at household levels
- Improving working condition of informal recycling actors

ご清聴ありがとうございました。 Thank you very much for your attention.

Bimastyaji Surya Ramadan, bimastyaji@live.undip.ac.id Premakumara Jagath Dickella Gamaralalage, premakumara@iges.or.jp

