Unmasking COVID-19: Comparative Analysis of Mask Usage and Environmental Impact in Asia

Chang Liu^{a,b}, Chen Liu^{b,*} and Yasuhiko Hotta^b

^aSchool of Economics and Management, Northeast Forestry University, Harbin 150040, China

^bSustainable Consumption and Production Area, Institute for Global Environmental Strategies, 2108-11 Kamiyamaguchi, Hayama 240-0115, Japan ^{*}Corresponding author: c-liu@iges.or.jp

Introduction	Aim
The COVID-19 pandemic has significantly increased the demand for face masks. Understanding usage patterns, influencing factors, and assessing environmental impacts across areas is vital for creating sustainable mask usage policies. This study examines mask usage in six Asian areas across distinct pandemic phases (pre-COVID-19,	 Understanding the usage patterns of disposable surgical face masks and cloth face masks in different phases of COVID-19. Analyze the influence of personal characteristics on the use of two types of masks. Estimate the environmental impact assessment of the two types of masks.
COVID-19, and the new normal). It evaluates the environmental impact of disposable surgical masks and cloth masks, covering carbon footprints, water footprints, solid	Materials and Methods
waste, and microplastic pollution. The research results indicate that during the COVID- 19 period, there was a sharp increase in mask usage, followed by a decrease in the new normal phase, although it remained higher than the pre-pandemic levels. Furthermore,	Data : This study leverages survey data encompassing mask usage covered six areas across five countries: Shanghai (SH) and Harbin (HRB) in China, the Philippines (PH), Hanoi (HAN) in Vietnam, Phnom Penh (PNH) in Cambodia, and Depok (DP) in

age and gender commonly influence the usage of disposable surgical face masks, with educational level having the most prominent impact on cloth face mask usage, followed by age and income. Disposable surgical masks have a greater environmental impact, but replacing them with cloth masks may reduce carbon emissions, waste, and microplastic pollution. However, it might increase water resource usage. Based on these findings, the study provides comprehensive policy recommendations related to mask usage and disposal.

Indonesia, with 1870 questionnaires collected.

Methodology: Two-factor ANOVA, T-test, and Poisson regression analysis. **Questionnaire**: The questionnaire mainly consists of two parts. The first part covers the basic characteristics of the respondents, including gender, age, area, education level, and monthly household income, among others. The second part focuses on mask usage, including the quantities of sigle-use surgical face masks and cloth face masks used during the periods before COVID-19, during COVID-19, and in the new normal.

The results of respondent characteristics in the survey questionnaire are presented in **Figure 1**, while mask usage is depicted in **Figure 2** and **Figure 3**.

Figure 1. Characteristics of respondents.

(SH-Shanghai; PNH-Phnom Penh; HRB-Harbin; HAN-Hanoi; PH-Philippines; DP-Depok; N.S.-No schooling; P.S.-Primary school; L.S.S.-Lower secondary school; H.S.-High school; V.T.U.-Vocational or technical university; Univ.-University; M.D.+-Master's degree or higher)

Results

Figure 5. Urban-rural differences in mask usage. * indicates significance at the 95% confidence. ** indicates significance at the 99% confidence.

The t-test results in **Figure 5** determine the statistical significance of urban-rural differences in mask usage across different regions. Before COVID-19, there were no

significant urban-rural differences in the usage of both types of face masks across the six areas. However, during COVID-19 and in the new normal, different areas
 exhibited varying urban-rural disparities in the usage of the two types of face masks.
 Table 1. Empirical results of the significance of factors affecting mask usage.

	Single-use sur	gical face mask	Cloth fa												
	Coef. P> t Coef. P> t					Single-use surgical face mask					Cloth face mask				
SH							Cathon	Water	Solid	Microplastics		Cathon	Water	Solid	
Gender	-0.1477	0.003**	0.2055	0.447		Number (billion pieces)	footprint (million	footprint (million	waste (million	(trillion microplastic	Number (million pieces)	footprint (million	footprint (million	waste (million	
Age	0.1071	0.001**	-0.4699	0.020*											
Education level	0.0756	0.004**	0.2391	0.091		•	kgCO2eq)	m3H2Oeq)	kg)	particles/ (piece·d))	•	kgCO2eq)	m3H2Oeq)	kg)	
Monthly household income	0.0625	0.002**	-0.1655	0.000	SH	4.57	146.20	105.08	15.72	1.39-3.33	35.64	13.54	70.21	0.44	
PNH															
Gender	-0.0195	0.826	1.5046	0.003**	PNH	0.33	10.53	7.58	1.13	0.10-0.24	1.92	0.73	3.78	0.02	
Age	-0.1418	0.000**	-0.4102	0.183		1.00	31.92	22.94	3.43	0.30-0.73	7.19	2.73	14.16	0.09	
Education level	-0.0426	0.131	0.8674	0.001**	HRB										
Monthly household income	-0.0220	0.463	0.1440	0.345	HAN	3 14	100.46	72 21	10.80	0.96-2.29	191 27	72.68	376.80	2.34	
HRB															
Gender	-0.2279	0.002**	-0.4191	0.315	MNL	5.22	166.97	120.01	17.95	1.59-3.80	251.74	95.66	495.92	3.07	
Age	-0.4951	0.000**	0.2123	0.253		7.57	242.10	174.01	26.03	2.30-5.51	402.24	152.85	792.41	4.91	
Education level	0.0532	0.040*	0.4096	0.013*	DP										
Monthly household income	0.1390	0.000**	-0.3650	0.051	Toal	21.83	698.18	501.83	75.06	6.64-15.90	890	338.19	1753.28	10.87	
HAN															
Gender	-0.0465	0.300	0.3334	0.000**											
Age	-0.1710	0.000**	0.0603	0.118	Tah	103	e 3. The changes in the environmental impact of								
Education level	0.0144	0.511	-0.1193	0.003**	140	IC J.									
Monthly household income	-0.0114	0.595	0.2365	0.000**	mas	KS.									
PH						C	arbon footp	rint W	ater footpri	nt Solid wa	iste	М	icroplastics		
Gender	-0.2076	0.000**	0.0644	0.553		(n	nillion kgCO	2eq) (mi) (million m3H2C	Deq) (million	kg)	(trillion m	(trillion microplastic particles/		
Age	0.0088	0.660	-0.1167	0.017*	SH	-30.46		497.40		-12.00)	(piece·d))			
Education level	-0.0168	0.334	-0.0109	0.785	PNI	H	-2.20		35.88		,	-(0.10-0.24)			
Monthly household in some	0.0101	0.410	0.1410	0.012*	HR	В	-6.65		108.58 -2.6			-(0.30-0.73)			
Monthly nousehold income	-0.0191	0.410	-0.1410	0.015	HA	N	-20.93		341.79			-(0.96-2.29)			
DP					MN	L	-34.79		568.05	-13.70)	-	(1.59-3.80)		
Gender	0.1959	0.004**	-0.0813	0.607	DI)	-50.44		823.64	-19.87	7	-	(2.30-5.51)		
Age	-0.0564	0.044*	-0 1696	0.007**	Toa	1	-145.47		2375.34			-(6.64-15.90)			

0.000**
0.026*Table 2 displays the annual environmental
impact resulting from single-use surgical and
cloth face mask usage. Replacing single-use
surgical face masks with cloth face masks
would result in a substantial reduction in
carbon footprint, solid waste, and
microplastics. However, it would lead to an
increase in the water footprint (Table 3).

Figure 4. Average number of mask usage in different areas. ** indicates significance at the 99% confidence.

usage of single-use surgical face masks during various phases of COVID-19 but no significant differences observed in cloth face mask usage. This might be attributed to the better protective properties of singleuse surgical face masks compared to cloth face masks against COVID-19.

Monthly household income-0.00310.843-0.07600.026*Poisson regression analysis, summarized in
Table 1, investigated factors influencing
face mask usage. In all models, chi-
squared test p-values were below 0.05,
signifying a highly significant statistical
distinction between observed data and the
independence assumption.

0.0577

-0.2779

Conclusions

Education level

This study utilized survey data to analyze the usage patterns of single-use surgical face masks and cloth face masks across six Asian areas. Individual characteristics affecting mask usage patterns were analyzed, and an estimation of the environmental impact of mask usage was conducted. Based on the research findings, relevant recommendations have been proposed, including establishing an environmentally-friendly mask supply chain, promoting sustainable mask use, and implementing awareness campaigns for proper masks selection and usage among specific demographic groups. These findings guide a balance between health and environmental concerns for more sustainable development.

