Towards Optimization of Renewable Energy Deployment for Nature-Based Solutions

Osamu Saito

Program Director, Institute for Global Environmental Strategies (IGES)

Visiting Professor, Institute for Future Initiatives (IFI),

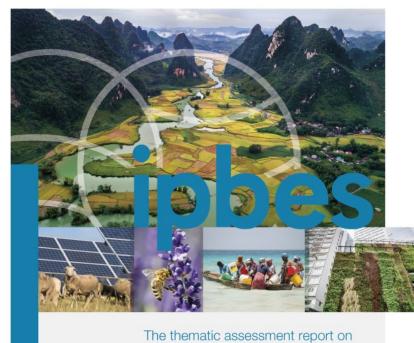
The University of Tokyo

Production of the IPBES Nexus Assessment

- Produced over a period of three years
- 165 selected experts:

✓ Co-chairs:

✓ Coordinating lead authors: 27


✓ Lead authors: 110

✓ Review editors: 13

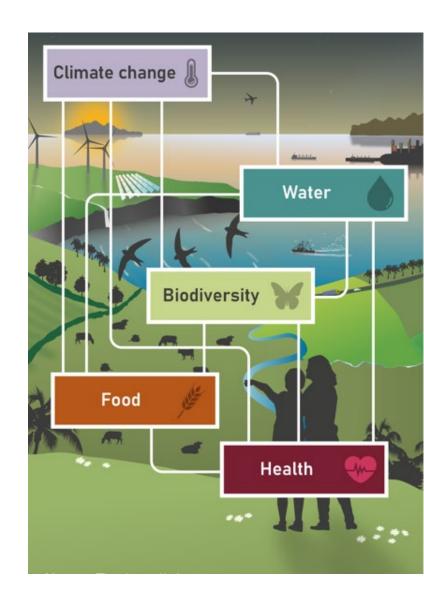
✓ Fellows: 13

Contributing authors over 70

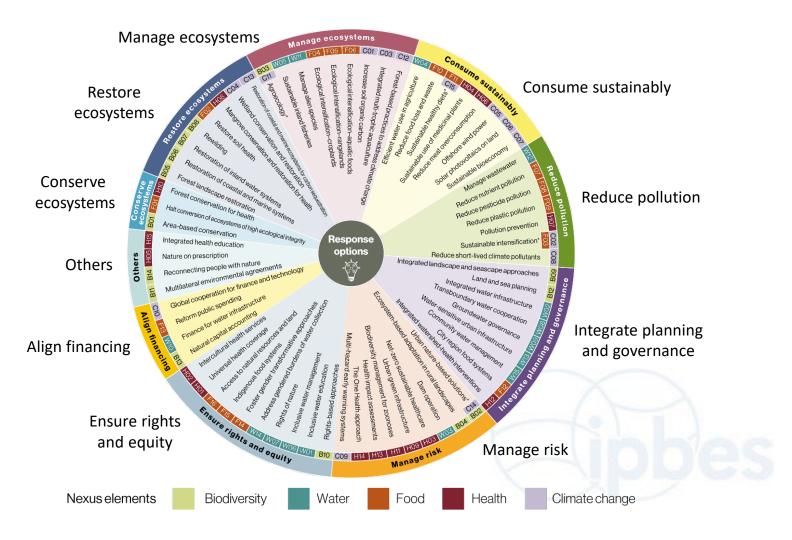
 Draws on 6,500 sources of knowledge, including peer-reviewed literature, grey literature and Indigenous and local knowledge

INTERLINKAGES AMONG BIODIVERSITY, WATER, FOOD AND HEALTH

SUMMARY FOR POLICYMAKERS



IPBES Nexus Assessment


- 5 crises are interlinked
 - Our responses are not
- Solutions already exist
 - > 70 response options assessed
- Role for everyone
 - Collaboration required

Response options already exist that address nexus interactions

Many response options benefit multiple nexus elements

 Many response options benefit multiple nexus 312 Land and sea planning elements when implemented at appropriate scales ntegrated water Transhoundary water and accounting for context Community water City region food syste ntegrated watershed Response option Response option Urban nature-based B09 Integrated landscape and **B01** Area-based conservation seascape approaches Halt conversion of ecosystems B12 Land and sea planning of high ecological integrity Forest conservation for Integrated water WO2 health infrastructure B05 Forest landscape Transboundary water wos restoration cooperation Restoration of coastal and lanning W09 Groundwater governance marine systems Restoration of inland water Water-sensitive urban systems infrastructure Community water **B08** Rewilding management Indigenous food syste Access to natura F12 City region food systems F02 Restore soil health Mangrove conservation Integrated watershedand restoration for health health interventions Wetland conservation and B02 Urban nature-based Reform public spending C14 solutions* restoration Restoration of coastal and marine Ecosystem-based adaptation in rural ecosystems for carbon sequestration landscapes W03 Dam operation Agroecology* Net-zero sustainable W05 Sustainable inland fisheries healthcare

H09 Urban green infrastructure

W11 Manage alien species

Contribution of nexus response options to global policy goals

- Nexus response options can support the achievement of global goals and targets such as the Sustainable Development Goals, the Kunming-Montreal Biodiversity Framework targets and the Paris Agreement long-term goals for mitigation and adaptation
- Nexus response options enable integration across these global policy frameworks

Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Renewable energy and biodiversity: Implications for transitioning to a Green Economy

Alexandros Gasparatos^{a,*}, Christopher N.H. Doll^b, Miguel Esteban^c, Abubakari Ahmed^c, Tabitha A. Olang^c

- a Integrated Research System for Sustainability Science (IR3S), University of Tokyo, Tokyo, Japan
- ^b Institute for the Advanced Study of Sustainability (UNU-IAS), United Nations University, Tokyo, Japan
- ^c Graduate Programme on Sustainability Science Global Leadership Initiative (GPSS-GLI), University of Tokyo, Kashiwa, Japan

Trends in **Ecology & Evolution**

Science & Society

Facilitating Policy Responses for Renewable Energy and Biodiversity

Alexandros Gasparatos, 1,2,* Abubakari Ahmed, 3 and Christina Voigt⁴

(Figure 1). Renewable energy generation usually as improved energy security, options affect biodiversity via multiple mechanisms [1,4] (Table 1). Mining and material sourcing for renewable energy infrastructure such as solar panels and batteries can further affect biodiversity [5]. It is possible that decommissioning and disposal of this infrastructure might have similar effects (Figure 1).

Renewable energy expansion and biodiversity conservation have both become major

green job generation, and/or climatechange mitigation. However, the negative trade-offs between renewable energy and biodiversity mostly manifest at the local and regional levels through diverse mechanisms associated with the location and operational characteristics of renewable energy installations, as well as the sourcing and disposal of the material used in renewable energy infrastructure (Table 1 and Figure 1)

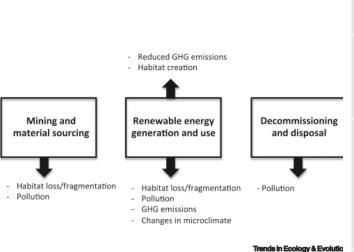
MA drivers of biodiversity loss for different renewable energy pathways (Gasparatos et al. 2017)

Mechanisms of the negative effects of different renewable energy pathways on ecosystems and biodiversity (Gasparatos et al. 2017)

Pathway	Mechanism	Scale of effect	Selected sources
Solar energy (Section 2.2)	Loss and/or fragmentation of habitats from solar power installations and ancillary developments	Local/landscape	[20,21,33]
	Bird collision with solar power installations	Local	[36]
	Burns to birds from intense solar fluxes	Local	[35,36]
	Pollution of water bodies from toxic chemicals used for treating the panels and the land prior to solar power infrastructure development	Local/landscape	[39]
	Prolonged drying of ephemeral water bodies due to increasing water use (especially in water-scarce environment such as deserts)	Local/landscape	[39,40]
	Attraction and disorientation of insects and birds caused by bright and/ or polarized light	Local	[36,37]
	Act as an ecological trap through cumulative attractor mechanisms	Local/landscape	[36]
	Cause changes to local micro-climate	Local	[41]
Wind energy (Section	Bird and bat collision with wind turbines	Local	[17,18,56–59,63,64]
3.2)	Barotrauma to bats	Local	[51]
	Disrupt the migratory routes of some bird and bat species	Local/landscape Regional	[18,62]
	Alter the feeding and roosting patterns of some bird species	Local/landscape	[60]
Hydropower (Section 4.2)	Flooding of upstream areas sinks ecosystems, fragments habitats and disaffects nature reserves	Local/landscape Regional	[87,93–95]
	Alteration of water flows upstream and downstream of hydropower installations	Local/landscape Regional	[98–106]
	Disrupt the migratory routes of some diadromous fish species	Local/landscape Regional	[107,108]
	Deteriorate water quality due to changes in sediment loading, turbidity and eutrophication	Local/landscape Regional	[99–111]
	Emissions of GHGs from reservoir that contribute to anthropogenic climate change	Global	[114–121]

Pathway	Mechanism	Scale of effect	Selected sources
Bioenergy (Section 5.2)	Loss and fragmentation of habitats due to land conversion into agricultural landscapes dominated by a single crop (usually associated with large-scale monocultural modes of feedstock production)	Local/landscape	[144,146,147,195,196,198,203- 205,209,210,216-220]
	Simplification and homogenization of habitats due to the extensive modification of landscape elements and ecosystem processes (usually associated with large-scale monocultural modes of feedstock production)	Local/landscape	[195,196,198,203,204,210,216]
	Pollution of soil and water from fertiliser/pesticide use that causes toxicity and eutrophication (usually associated with large-scale monocultural modes of feedstock production)	Local/landscape, Regional	[203,290–301]
	Emission of ambient air pollutants that contribute to acidification and tropospheric ozone formation Emission of GHGs during the entire life-cycle of bioenergy generation (including from direct and indirect land use change) that contributes to anthropogenic climate change	Local/landscape Regional Global	[159–182,203,237–248,274–276,278,279,280,281] Table 1
	Effects to local micro-climates due to changes in albedo and evapotranspiration	Local/landscape, Regional	[183,234,254–259]
	Invasive behavior of some feedstock species (e.g. eucalyptus, miscanthus) that compete with native vegetation	Local/landscape, Regional	[302–306,311]

Pathway	Mechanism	Scale of effect	Selected sources
Ocean energy (Section 6.2)	Fish/benthic species composition changes due to habitat loss from scour pits at the foundations of offshore wind generators and ocean energy devices installed/anchored in the seabed	Local	[355]
	Loss/change of habitat from the permanent inundation of the upstrean portions of estuaries from tidal barrages.	n Local/landscape	[344]
	Habitat change due to the alteration of hydrodynamic and sedimentation processes	Local/seascape	[26,353,381,382]
	Avoidance of underwater areas close to ocean energy installations by some species (especially during construction)	Local/seascape	[354,356,357]
	Species entrapment at tidal barrages Collision of birds (with offshore wind generators) and aquatic species (with wave energy devices)	Local/landscape Local	[342] [18,26,349,371,374,375]
	Interference with navigation and feeding patterns of local and migratory species	y Local/seascape	[358,359,376]
	Excess mortality of tropical fish due to temperature shocks from upwelled cold water at OTEC projects	Local	[386]
	Increased turbidity at water column due to distrurbances in the seabed Changes in salinity, water turbidity and exchange between flushing of oxygenated water in tidal barrages		[387] [370,377]
	Noise pollution during the construction and operation affects some aquatic species (particularly aquatic mammals)	Local	[355,388,389]
	Electromagnetic pollution from underwater cables can affect sensitive species	Local	[26,384,387]
	Chemical pollution from toxic lubricants and paints	Local	[26,359,374]
Geothermal (Section 7.2)	Habitat loss during the conversion of natural areas into geothermal facilities	Local/landscape	[402–405]
	Habitat change during site clearing, road construction, well drilling and seismic surveys that affects the breeding, foraging and migration patterns of certain species	Local/landscape	[401]
	Emission of toxic pollutants such as H ₂ S, arsenic and boric acid which can defoliate plants or be uptaken by biota	Local/landscape	[411–415]
	Noise and heat pollution from geothermal facilities	Local/landscape	[408,416,417]
Institute for Global	■ Institute for Future Initiatives		11


Biodiversity benefits of different renewable energy pathways (Gasparatos et al. 2017)

Renewable pathway	Biodiversity benefit	Selected sources
Solar energy	Solar energy installations can provide cover/habitat and feeding areas (e.g. grazing) for certain animals. This includes both USSE and photovoltaic panels mounted on rooftops and building facades.	[21,47]
Wind energy	Wind power installations might provide favourable grounds for some terrestrial species due to reduced traffic, greater availability of food and lack of predators	[66]
Hydropower	Hydroelectric facilities can create new habitats for some iconic species	[96]
Bioenergy	Some bioenergy landscapes (e.g. miscanthus, switchgrass) can provide habitat, food and other supporting ecosystem services compared to other agricultural practices (especially intensified monocultures)	[155–158] [221–233]
Ocean/Offshore wind energy	Ocean/offshore wind energy facilities can make marine areas inaccessible to fishing and maritime activities, protecting fish stocks and acting as de facto marine reserves	[395,497]
Ocean/Offshore wind energy	Benthic and fish species increases around offshore wind farms and wave/ tidal infrastructure possibly due to shelter effects.	[360,362–364, 360,365–370]

Main Interactions between Renewable Energy and Biodiversity

Main Mechanisms of the Effects of Renewable Energy Generation on Biodiversity (Gasparatos et al. 2021)

Bird and insect attraction, collision, and burn (-) Water overexploitation in dry environments and pollution from toxic chemic		/ \ 1 /
Bird and insect attraction, collision, and burn (-) Water overexploitation in dry environments and pollution from toxic chemic	enewable energy option	Mechanism ^a
Provision of cover, habitat, and feeding grounds (e.g., for grazing) (+)		Water overexploitation in dry environments and pollution from toxic chemicals for panel treatment (–)
Wind energy Habitat loss and fragmentation from installations and ancillary infrastructure Collision of birds and bats with installations and power lines (–) Disruption of migratory routes and alteration of feeding patterns (–)		, , , , ,
Hydropower Habitat loss and fragmentation from installations, ancillary infrastructure and upland flooding (-) Alteration of water flows and deterioration of water quality (-) Alteration of migratory routes (-) Habitat generation in flooded areas (+)	ydropower	Alteration of water flows and deterioration of water quality (–) Alteration of migratory routes (–)
agriculture and forestry (-) Water overexploitation and water/air pollution from intensive agricultural activities (-) Invasive behavior of some bioenergy feedstocks (-) Microclimate effects through changes in albedo and evapotranspiration (-)		Water overexploitation and water/air pollution from intensive agricultural activities (–) Invasive behavior of some bioenergy feedstocks (–) Microclimate effects through changes in albedo and evapotranspiration (–) Some bioenergy landscapes provide better habitat options than intensified
Ocean energy Habitat loss and fragmentation from installations, ancillary infrastructure and changes in hydrodynamic and sedimentation processes (–) Collision of birds, fish, and aquatic mammals with installations (–) Noise, electromagnetic, and chemical pollution (–) Habitat generation in infrastructure foundations and through the curtailment of vessel movement (+)		Collision of birds, fish, and aquatic mammals with installations (-) Noise, electromagnetic, and chemical pollution (-) Habitat generation in infrastructure foundations and through the
Geothermal energy Habitat loss and fragmentation from installations and ancillary infrastructure (–) Noise, heat, and chemical pollution (–)		infrastructure (–)

Environment Research and Technology Development Fund Strategic Research and Development Area Project (S-21: FY2023-2027)

Development of an Integrated Assessment Model linking Biodiversity and Socio-Economic Drivers, and its Social Application (IAM-B)

Project website: https://iam-b.jp/en/

Lead P.I.: Osamu Saito (Institute for Global Environmental Strategies)

Theme 1 P.I.: Hiroya Yamano (The Univ. of Tokyo/NIES)

Theme 2 P.I.: Osamu Saito (IGES)

Theme 3 P.I.: Katsue Fukamachi (Kyoto University)

Theme 4 P.I.: Shizuka Hashimoto (The Univ. of Tokyo)

Theme 5 P.I.: Takehito Yoshida (The Univ. of Tokyo)

Post-PANCES: Development of an Integrated Assessment Model linking Biodiversity and Socio-Economic Drivers, and its Social Application (S21)

Objectives

- Develop an integrated
 assessment model to quantify
 biodiversity, climate change, and
 associated socio-economic
 factors
- The integrated assessment model will be developed and applied at both national and local scales in Japan to provide scientific inputs for building sustainable societies
- □ Contribute to assessments by IPBES and IPCC, TNFD, SDGs and Kunming-Montreal Global Biodiversity Framework, and post-SDGs global goals

Theme 1:

Development of an Integrate Assessment Model of a Social-Ecological System

Theme 2:

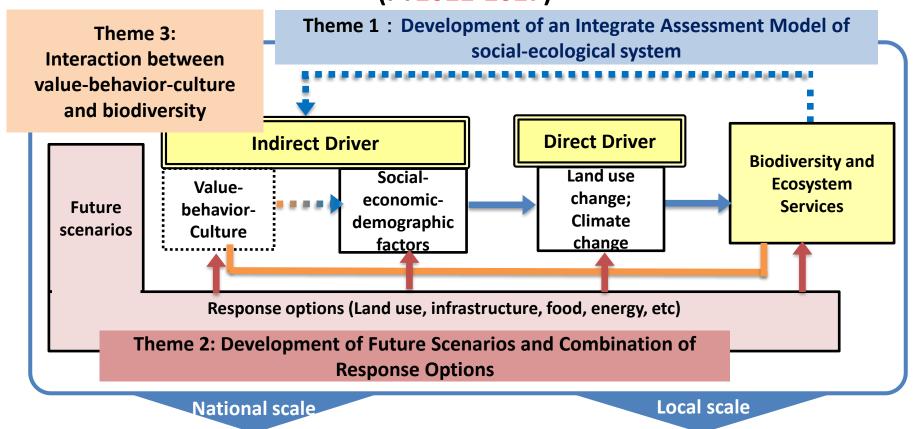
Development of Future Scenarios and Combination of Response Options

Theme 3:

Interaction between Value-Behavior-Culture and Biodiversity

Theme 4:

National Scale Scenario Analysis by the Integrated Assessment Model and its Social Application


Theme 5:

Local Scale Scenario Analysis by the Integrated

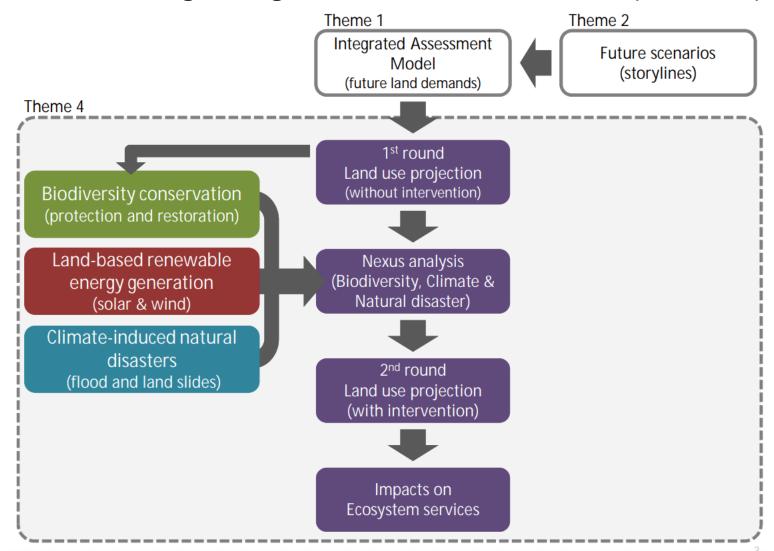
Assessment Model and its Social Application

v o c

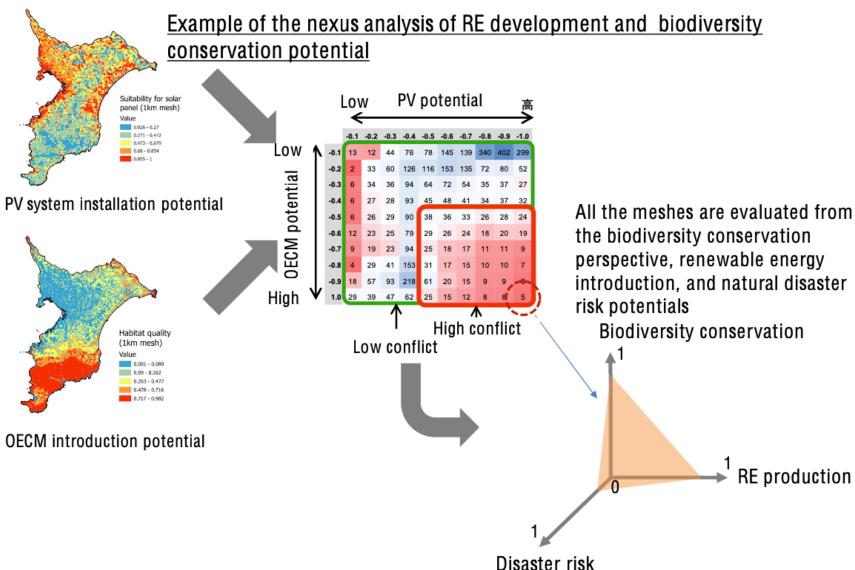
Post-PANCES: Development of an Integrated Assessment Model linking Biodiversity and Socio-Economic Drivers, and its Social Application (S21) (FY2022-2027)

Theme 4: National Scale Scenario Analysis by the Integrated Assessment Model and its Social Application

- Protected area
 Land use policy
 Net Zero Carbon
- Trade-off analysis


Theme 5: Local Scale Scenario Analysis by the Integrated Assessment Model and its Social Application

- Urban area
 Satoyama landscape and seascape
- Regional partnership
 Meta-analysis


Analyze synergies and trade-offs among biodiversity conservation, climate change mitigation, and natural disaster (Theme 4)

Nexus analysis framework of conservation, climate change mitigation & natural disaster risk (ongoing)

Summary

- □ IPBES nexus assessment (IPBES, 2024) identified 71 response options including urban nature-based solutions
- Renewable energy contributes sub-stantially to climate change mitigation, but its expansion can have trade-offs with biodiversity.
- □ These trade-offs could be reduced by building a strong evidence base, rationalizing the selection of sites and operational characteristics of renewable energy installations, and coordinating concerted policy efforts at the local, national and international levels.
- □ S-21 project has been working on nexus analysis across conservation, climate change mitigation & natural disaster risk.

